Drinfel'd module
From Wikipedia, the free encyclopedia
In mathematics, a Drinfel'd module (or elliptic module) is roughly a special kind of module over a ring of functions on a curve over a finite field, generalizing the Carlitz module. Loosely speaking, they provide a function field analogue of complex multiplication theory. A shtuka (also called F-sheaf or chtouca) is a sort of generalization of a Drinfel'd module, consisting roughly of a vector bundle over a curve, together with some extra structure identifying a Frobenius twist of the bundle with a "modification" of it.
Drinfel'd modules were invented in about 1973 by Vladimir Drinfel'd, who used them to prove the Langlands conjectures for GL2 of a function field in some special cases. He later invented shtukas and used shtukas of rank 2 to prove the remaining cases of the Langlands conjectures for GL2. Laurent Lafforgue proved the Langlands conjectures for GLn of a function field by studying the moduli stack of shtukas of rank n.
"Shtuka" is a Russian word штука meaning "thing", which comes from the German noun “Stück” meaning “piece, item, or unit" (it is not related to the German word stuka, which means dive bomber).
Contents |
[edit] Drinfel'd modules
[edit] The ring of additive polynomials
We let L be a field of characteristic p>0. The ring L{τ} is defined to be the ring of noncommutative (or twisted) polynomials a0 + a1τ + a2τ2 + ... over L, with the multiplication given by
- τa = apτ
for a∈ L. The element τ can be thought of as a Frobenius element: in fact, L is a left module over L{τ}, with elements of L acting as multiplication and τ acting as the Frobenius endomorphism of L. The ring L{τ} can also be thought of as the ring of all (absolutely) additive polynomials
in L[x], where a polynomial f is called additive if f(x + y) = f(x) + f(y) (as elements of L[x,y]). The ring of additive polynomials is generated as an algebra over L by the polynomial τ = xp. The multiplication in the ring of additive polynomials is given by composition of polynomials, not by multiplication of commutative polynomials, and is not commutative.
[edit] Definition of Drinfel'd modules
If A is a commutative ring, then a Drinfel'd A-module over L is defined to be a ring homomorphism ψ from A to L{τ}, such that the image is not contained in L.
The ring A will usually be a ring of functions on some affine curve over a finite field.
The condition that the image of A is not in L is a non-degeneracy condition, put in to eliminate trivial cases.
As L{τ} can be thought of as endomorphisms of the additive group of L, a Drinfel'd A-module can be regarded as an action of A on the additive group of L, or in other words as an A-module whose underlying additive group is the additive group of L.
[edit] Examples of Drinfel'd modules
- Define A to be Fp[T], the usual (commutative!) ring of polynomials over the finite field of order p. In other words A is the coordinate ring of an affine genus 0 curve. Then a Drinfel'd module ψ is determined by the image ψ(T) of T, which can be any non-constant element of L{τ}. So Drinfel'd modules can be identified with non-constant elements of L{τ}. (In the higher genus case the description of Drinfel'd modules is more complicated.)
- The Carlitz module is the Drinfel'd module ψ given by ψ(T) = T+τ, where A is Fp[T] and L is a suitable complete algebraically closed field containing A. It was described by L. Carlitz in 1935, many years before the general definition of Drinfel'd module. See chapter 3 of Goss's book for more information about the Carlitz module.
[edit] Shtukas
Suppose that X is a curve over the finite field Fp. A (right) shtuka of rank r over a scheme (or stack) U is given by the following data:
- Locally free sheaves E, E′ of rank r over U×X together with injective morphisms
- E → E′ ← (Fr×1)*E,
whose cokernels are supported on certain graphs of morphisms from U to X (called the zero and pole of the shtuka, and usually denoted by 0 and ∞), and are locally free of rank 1 on their supports. Here (Fr×1)*E is the pullback of E by the Frobenious endomorphism of U.
A left shtuka is defined in the same way except that the direction of the morphisms is reversed. If the pole and zero of the shtuka are disjoint then left shtukas and right shtukas are essentially the same.
By varying U, we get an algebraic stack Shtukar of shtukas of rank r, a "universal" shtuka over Shtukar×X and a morphism (∞,0) from Shtukar to X×X which is smooth and of relative dimension 2r−2. The stack Shtukar is not of finite type for r>1.
Drinfel'd modules are in some sense special kinds of shtukas. (This is not at all obvious from the definitions.) More precisely, Drinfel'd showed how to construct a shtuka from a Drinfel'd module. See Drinfel'd, V. G. Commutative subrings of certain noncommutative rings. Funkcional. Anal. i Prilovzen. 11 (1977), no. 1, 11--14, 96. for details.
[edit] Applications
The Langlands conjectures for functions fields state (very roughly) that there is a bijection between cuspidal automorphic representations of GLn and certain representations of a Galois group. Drinfel'd used Drinfel'd modules to prove some special cases of the Langlands conjectures, and later proved the full Langlands conjectures for GL2 by generalizing Drinfel'd modules to shtukas. The "hard" part of proving these conjectures is to construct Galois representations with certain properties, and Drinfel'd constructed the necessary Galois representations by finding them inside the l-adic cohomology of certain moduli spaces of rank 2 shtukas.
Drinfel'd suggested that moduli spaces of shtukas of rank r could be used in a similar way to prove the Langlands conjectures for GLr; the formidable technical problems involved in carrying out this program were solved by Lafforgue after many years of effort.
[edit] References
[edit] Drinfel'd modules
- V. Drinfel'd, Elliptic modules (Russian) Math. Sbornik 94 (1974), English translation in Math. USSR Sbornik 23 (1976) 561-92.
- D. Goss, Basic structures of function field arithmetic, ISBN 3-540-63541-6
- Drinfel'd module in the Springer encyclopaedia of mathematics
- G. Laumon, Cohomology of Drinfeld modular varieties I, II, Cambridge university press 1996
[edit] Shtukas
- Drinfel'd, V. G. Cohomology of compactified moduli varieties of F-sheaves of rank 2. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 162 (1987), Avtomorfn. Funkts. i Teor. Chisel. III, 107--158, 189; translation in J. Soviet Math. 46 (1989), no. 2, 1789-1821
- Drinfel'd, V. G. Moduli varieties of F-sheaves. (Russian) Funktsional. Anal. i Prilozhen. 21 (1987), no. 2, 23--41. English translation: Functional Anal. Appl. 21 (1987), no. 2, 107-122.
- D. Goss, What is a shtuka? Notices of the Amer. Math. Soc. Vol. 50 No. 1 (2003)
[edit] Lafforgue's work on the Langlands conjecture
- Lafforgue, L. Chtoucas de Drinfeld et applications. (Drinfeld shtukas and applications) Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 563--570
- Lafforgue, Laurent Chtoucas de Drinfeld, formule des traces d'Arthur-Selberg et correspondance de Langlands. (Drinfeld shtukas, Arthur-Selberg trace formula and Langlands correspondence) Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 383--400, Higher Ed. Press, Beijing, 2002.
- Gérard Laumon, The work of Laurent Lafforgue Proceedings of the ICM, Beijing 2002, vol. 1, 91--97
- G. Laumon La correspondance de Langlands sur les corps de fonctions (d'apres Laurent Lafforgue) (The Langlands correspondence over function fields (according to Laurent Lafforgue)) Seminaire Bourbaki, 52eme annee, 1999-2000, no. 873