Made with matlab.
[edit] Source code
% plot a the cummulative distribution function for a
% (a) discrete distribution
% (b) continuous distribtuion
% (c) a distribution which has both a discrete and a continuous part
function main()
clf; hold on; axis equal; axis off;
L=4; h = 0.02;
X=0:h:L;
shift = 2;
Y = [0*find(X < 0.2*L), 0.3+0*find( X >= 0.2*L & X < 0.4*L) 0.6+0*find(X >= 0.4*L & X < 0.8*L), 1+0*find(X>= 0.8*L)];
plot_graph(X, Y, L, 0*shift)
Y = 0.5*erf((4/L)*(X-L/2.5))+0.5;
plot_graph(X, Y, L, shift);
ds = 0.4;
Y = 0.5*erf((2/L)*(X-L/1.5))+0.5;
Y = Y + [0*find(X < ds*L) 0.4+0*find(X >= ds*L)]; Y = min(Y, 1);
plot_graph(X, Y, L, 2*shift);
% plot two dummy points to make matlab expand a bit the window before saving
plot(L+0.15, 1.1, '*', 'color', 0.99*[1, 1, 1]);
plot(-0.5, -2.1*shift, '*', 'color', 0.99*[1, 1, 1]);
% save as eps
saveas(gcf, 'Discrete_probability_distribution_illustration.eps', 'psc2')
function plot_graph(X, Y, L, shift)
% settings
N = length (X);
tol = 0.1;
thick_line = 3;
thin_line = 2;
small_rad = 0.07;
red= [1, 0, 0];
blue = [0, 0, 1];
fs = 23;
epsilon = 0.01;
% plot a blue box
plot([0, L, L, 0, 0], [0, 0, 1, 1, 0]-shift, 'linewidth', thin_line, 'color', blue)
% everything will be shifted down
Y = Y - shift;
% if the given funtion has a jump, plot some balls. Otherwise plot a continous segment
for i=1:(N-1)
if abs(Y(i)-Y(i+1)) > tol
ball (X(i+1), Y(i+1), small_rad, red);
empty_ball (X(i), Y(i), thin_line, 0.9*small_rad, red);
else
plot([X(i)-epsilon, X(i+1)+epsilon], [Y(i), Y(i+1)], 'color', red, 'linewidth', thick_line);
end
end
ball (0, -shift, small_rad, red);
ball (L, 1-shift, small_rad, red);
%plot text
small= 0.4;
text(-small, 0-shift, '0', 'fontsize', fs)
text(-small, 1-shift, '1', 'fontsize', fs)
function ball(x, y, r, color)
Theta=0:0.1:2*pi;
X=r*cos(Theta)+x;
Y=r*sin(Theta)+y;
H=fill(X, Y, color);
set(H, 'EdgeColor', 'none');
function empty_ball(x, y, thick_line, r, color)
Theta=0:0.1:2*pi;
X=r*cos(Theta)+x;
Y=r*sin(Theta)+y;
H=fill(X, Y, [1 1 1]);
plot(X, Y, 'color', color, 'linewidth', thick_line);
Click on a date/time to view the file as it appeared at that time.
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):