Dirichlet integral

From Wikipedia, the free encyclopedia

In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet.

One of those is

\int_0^\infty \frac{\sin \omega}{\omega}\,d\omega = \frac{\pi}{2}

This can be proven using a Fourier integral representation. It can also be evaluated quite simply using differentiation under the integral sign.

[edit] Proof Using Differentiation Under the Integral Sign

We will first rewrite the integral as a function of an arbitrary constant, α and ω.

Let f(\alpha)=\int_0^\infty e^{-\alpha\omega} \frac{\sin \omega}{\omega} d\omega

Then we need to find f(0)

Differentiating with respect to α gives us:

\frac{df}{d\alpha}=\frac{\partial}{\partial\alpha}\int_0^\infty e^{-\alpha\omega} \frac{\sin \omega}{\omega} d\omega

Applying the Leibniz Integral Rule,

\frac{\partial}{\partial\alpha}\int_0^\infty e^{-\alpha\omega} \frac{\sin \omega}{\omega} d\omega = \int_0^\infty  \frac{\partial}{\partial\alpha}e^{-\alpha\omega}\frac{\sin \omega}{\omega} d\omega = -\int_0^\infty e^{-\alpha\omega} \sin \omega \,d\omega

This integral is made much simpler by recalling Euler's forumla

eiω = cosω + isinω

Then

\Im e^{i\omega}=\sin \omega, where \Im represents the imaginary part.

Rewriting the integral gives us:

-\Im\int_0^\infty e^{-\alpha\omega}e^{i\omega}d\omega=\Im\frac{1}{-\alpha+i}=\Im\frac{-\alpha-i}{\alpha^2+1}=\frac{-1}{\alpha^2+1}

So,

\frac{df}{d\alpha}=\frac{-1}{\alpha^2+1}

Integrating both sides from 0 to \infty

\int_0^\infty\frac{df}{d\alpha}d\alpha=\int_0^\infty\frac{-1}{\alpha^2+1}d\alpha
f(\infty)-f(0)=-\arctan \infty + \arctan 0
f(0)=\frac{\pi}{2} + f(\infty)

Note that f(\infty)=\lim_{\alpha\rightarrow \infty} \int_0^\infty e^{-\alpha\omega} \frac{\sin \omega}{\omega}=0

So,

f(0)=\frac{\pi}{2}

Then

\int_0^\infty \frac{\sin \omega}{\omega}\,d\omega = \frac{\pi}{2}

[edit] See also

[edit] External links