Dihedral prime

From Wikipedia, the free encyclopedia

A dihedral prime or dihedral calculator prime is a prime number that still reads like itself or another prime number when read in a seven-segment display, regardless of orientation (normally or upside down), and surface (actual display or reflection on a mirror). The first few decimal dihedral primes are

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (sequence A038136 in OEIS)[1]

The smallest dihedral prime that reads differently with each orientation and surface combination is 120121 which becomes 121021 (upside down), 151051 (mirrored), and 150151 (both upside down and mirrored).

The digits 0, 1 and 8 remain the same regardless of orientation or surface (the fact that 1 moves from the right to the left of the seven-segment cell when reversed is ignored). 2 and 5 remain the same when viewed upside down, and turn into each other when reflected in a mirror. In the display of a calculator that can handle hexadecimal, 3 would become E reflected, but E being an even digit, the 3 can't be used as the first digit because the reflected number will be even. Though 6 and 9 become each other upside down, they are not valid digits when reflected, at least not in any of the numeral systems pocket calculators usually operate in.

Strobogrammatic primes that don't use 6 or 9 are dihedral primes. This includes repunit primes and all other palindromic primes which only contain digits 0, 1 and 8 (in binary, all palindromic primes are dihedral). It appears to be unknown whether there exist infinitely many dihedral primes, but this would follow from the conjecture that there are infinitely many repunit primes.

In 2006 Phil Carmody found the palindromic prime 10127576 + 1081101080188810801011801 × 1063776 + 1.[2] It may be the largest known dihedral prime.

[edit] Notes

  1. ^ A038136 misses the dihedral prime 5. Retrieved on 2007-03-05.
  2. ^ Chris Caldwell, The Top Twenty: Palindrome

[edit] References

  • Eric W. Weisstein. Dihedral Prime. MathWorld – A Wolfram Web Resource.