DH-1
From Wikipedia, the free encyclopedia
This page refers to the DH-1[1] rocket proposal, not the Airco DH.1.
The DH-1 is a reusable two stage to orbit rocket proposed in the book The Rocket Company. The DH-1 will never be built, and its manufacturing company AM&M are fictional, used in the book as tools to highlight the problems of building a Cheap Access To Space vehicle, but the science, engineering and politics that underlines the design are not. It is notable in such proposals to avoid new or nonexistent wonder technologies, to rely on human rather than computer control, a very small 5000lb payload capacity (including pilot), a 'pop up first stage' launch profile, to market the vehicle for 'space access' rather than 'cargo delivery', and the intention to sell the vehicles rather than payload space.
Contents |
[edit] First stage
The first stage is cylindrical in shape, 25ft wide and 30 high. It has an empty weight of 40,000lb, carries 175,00lb of methane and oxygen, and a GLOW of 209,000lb including the second stage. It is fitted with five RL-60 and 4 RL-10 sustainer engines, and 4 small jet landing engines, all modified to burn methane. At launch it is mounted on 4 internal launch-rails fitted with pneumatic shock absorbers, rather than locked to the launch frame with explosive bolts. Allowing the DH-1 to rise as soon as thrust exceeds weight avoids sudden shock loads and allows it to settle back onto the launch frame in the event of critical engine failure in the first few meters of flight.
Flight is functionally similar to the DC-X. At launch all 9 rockets are fired until the DH-1 reaches 100,000 feet. At that point the RL-60s are shut down and the sustainer engines push the rocket up to 200,000 ft (~60km) where separation occurs. The first stage flight profile is almost entirely vertical, with only slight sideways motion to keep above the launch/landing area. The first stage then drops back to the launch site, experiencing 'reentry heating' roughly comparisons to the SR-71, releasing a drogue chute at 120,000ft, and decelerating and landing with 30 seconds reserve fuel on the jet engines.
[edit] Second Stage
The second stage is cone shaped, 20ft wide, 44ft high, and cone angle of 11.5 degrees. It has an empty weight of 17,000lb, carries 82,000lb of hydrogen and oxygen, and a gross weight of 99,000lb at separation. It is fitted with two RL-60 and a small RCS system. At staging height the air is so thin the engines can be optimised for vacuum without performance penalty. The inter-tank section doubles as the flight and cargo cabin. Power is provided by batteries and a strip of solar panels that run around the top of the cabin. Reentry is base first and is protected by transpiration heatshield, before a parafoil is deployed and the upper stage glides down in a horizontal position to land on three legs; two extended from the base and one from the nosecone.
[edit] Aircraft like operations
A much desired goal for space launch is the ability to put material and people into orbit with the same reliability and comparative cost as commercial air transport. For reusable vehicles the desire is for a vehicle that operates like an aircraft, in that after it lands you only need to refuel and reload it in order to fly again. The Rocket Company takes the idea one step further, and proposes that the vehicles should be sold like commercial vehicles, under the same export rules as a 747.
Once purchased the DH-1 would operate as a specialized aircraft that can be used as often or as rarely as the customer desires, similar to the SR-71, Air Force One, or a UAV. The customer would not be buying an ability to launch satellites so much as a complete space programme for less than $400M (including facilities and DH-1) and a yearly cost of under $100M. Since there are no overflight issues and the facilities can fit in a one mile circle they can be located far in land, allowing many inland locations (such as Ohio or Switzerland for example) to run their own launch facilities.
[edit] Reliability
The RL-60 rocket is a closed cycle expander engine, and is a scaled up version of the RL-10, one of the most reliable engines ever built. Though this type of engine is not as capable of generating the same power as the SSME, it is much less complex and much more reliable. Expander cycle engines do not need computer controllers to merely function. The fuel coming out of the engine bell cooling system is also not much hotter than room temperature, and hence does not cause nearly so much damage as preburners (read 'mini rocket engines) do.
Current material technology is not up to building a single stage vehicle that can go into orbit, and carry a useful payload, and return to earth in a condition to launch again. The DH-1 gets around this problem by splitting the task between the two stages, allowing both to operate safely within known material limits, and known operating methods. A DH-1 style vehicle can therefore be designed for reliability and safety, rather than absolute performance at the expense of those criteria.
[edit] Financial considerations
With an estimated manufacturing cost of $65 million and a sale price of $250 million the development costs of ~$3 billion could be paid off with about 20 sales. Launch costs were estimated at $1M (launch often) to $100M (once per year) depending on how often the vehicle was operated, with launch facilities costing $100M and fitting inside a 1 mile circle. The Rocket Company asserts that globally such sales are possible. Potential clients are suggested as NASA, the USAF, NATO countries like UK, France, Germany and Japan, as well as private firms, like Virgin Galactic or Bigelow Aerospace.
The Rocket Company asserts that with a number of reliable vehicles competing in an open market, the price should eventually fall to close to the actual launch cost of under $200 per pound.
[edit] Beyond LEO
The upper stage is designed to operate in space, and to be refueled there. Assuming the presence of a space station for storing the propellant, an orbital DH-1 could be refueled after 17 launches. Linking two such refueled stages nose to nose would enable you to take ~35,000lb to the Lunar surface, the Martian surface, or geosynchronous orbit, and return to the station. Due to fuel requirements, the cost to these locations is 6 times greater than the cost to LEO.
Variants with a stretched cabin and a hinged nose have also been suggested. The former could be outfitted in orbit to carry people in comparative comfort on long duration flights, while the latter could be used to carry bulky cargo that would not fit through the normal cargo hatch. For interplanetary flights, the book suggested using one RL-60 modified to run on methane which was fitted with an engine bell extension, which was removable to allow aerobreaking.
[edit] References
- ^ The Rocket Company; American Institute of Aeronautics and Astronautics; ISBN 1-56347-696-7