Dense order
From Wikipedia, the free encyclopedia
In mathematics, a partial order ≤ on a set X is said to be dense (or dense-in-itself) if, for all x and y in X for which x < y, there is a z in X such that x < z < y.
The rational numbers with the ordinary ordering are a densely ordered set in this sense, as are the real numbers. On the other hand, the ordinary ordering on the integers is not dense.