Deficient number

From Wikipedia, the free encyclopedia

Divisibility-based
sets of integers
Form of factorization:
Prime number
Composite number
Powerful number
Square-free number
Achilles number
Constrained divisor sums:
Perfect number
Almost perfect number
Quasiperfect number
Multiply perfect number
Hyperperfect number
Superperfect number
Unitary perfect number
Semiperfect number
Primitive semiperfect number
Practical number
Numbers with many divisors:
Abundant number
Highly abundant number
Superabundant number
Colossally abundant number
Highly composite number
Superior highly composite number
Other:
Deficient number
Weird number
Amicable number
Friendly number
Sociable number
Solitary number
Sublime number
Harmonic divisor number
Frugal number
Equidigital number
Extravagant number
See also:
Divisor function
Divisor
Prime factor
Factorization
This box: view  talk  edit

In mathematics, a deficient number or defective number is a number n for which σ(n) < 2n. Here σ(n) is the sum-of-divisors function: the sum of all positive divisors of n, including n itself. An equivalent definition is that the sum of all proper divisors of the number (divisors other than the number itself) is less than the number. The value 2n − σ(n) is called the deficiency of n.

The first few deficient numbers (sequence A005100 in OEIS) are

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, …

As an example, consider the number 21. Its divisors are 1, 3, 7 and 21, whose sum is 32. Because 32 is less than 2 × 21, the number 21 is deficient. Its deficiency is 2 × 21 − 32 = 10.

An infinite number of both even and odd deficient numbers exist. For example, all prime numbers, all prime powers and all proper divisors of deficient or perfect numbers are deficient.

Closely related to deficient numbers are perfect numbers with σ(n) = 2n, and abundant numbers with σ(n) > 2n. The natural numbers were first classified as either deficient, perfect or abundant by Nicomachus in his Introductio Arithmetica (circa 100).

[edit] See also

[edit] External links