Deficient number
From Wikipedia, the free encyclopedia
Divisibility-based sets of integers |
Form of factorization: |
Prime number |
Composite number |
Powerful number |
Square-free number |
Achilles number |
Constrained divisor sums: |
Perfect number |
Almost perfect number |
Quasiperfect number |
Multiply perfect number |
Hyperperfect number |
Superperfect number |
Unitary perfect number |
Semiperfect number |
Primitive semiperfect number |
Practical number |
Numbers with many divisors: |
Abundant number |
Highly abundant number |
Superabundant number |
Colossally abundant number |
Highly composite number |
Superior highly composite number |
Other: |
Deficient number |
Weird number |
Amicable number |
Friendly number |
Sociable number |
Solitary number |
Sublime number |
Harmonic divisor number |
Frugal number |
Equidigital number |
Extravagant number |
See also: |
Divisor function |
Divisor |
Prime factor |
Factorization |
In mathematics, a deficient number or defective number is a number n for which σ(n) < 2n. Here σ(n) is the sum-of-divisors function: the sum of all positive divisors of n, including n itself. An equivalent definition is that the sum of all proper divisors of the number (divisors other than the number itself) is less than the number. The value 2n − σ(n) is called the deficiency of n.
The first few deficient numbers (sequence A005100 in OEIS) are
As an example, consider the number 21. Its divisors are 1, 3, 7 and 21, whose sum is 32. Because 32 is less than 2 × 21, the number 21 is deficient. Its deficiency is 2 × 21 − 32 = 10.
An infinite number of both even and odd deficient numbers exist. For example, all prime numbers, all prime powers and all proper divisors of deficient or perfect numbers are deficient.
Closely related to deficient numbers are perfect numbers with σ(n) = 2n, and abundant numbers with σ(n) > 2n. The natural numbers were first classified as either deficient, perfect or abundant by Nicomachus in his Introductio Arithmetica (circa 100).