DCTN3
From Wikipedia, the free encyclopedia
Dynactin 3 (p22)
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | DCTN3; DCTN-22; DCTN22; MGC111190 | |||||||||||||
External IDs | OMIM: 607387 MGI: 1859251 HomoloGene: 5233 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 11258 | 53598 | ||||||||||||
Ensembl | ENSG00000137100 | ENSMUSG00000028447 | ||||||||||||
Uniprot | O75935 | Q9Z0Y1 | ||||||||||||
Refseq | NM_007234 (mRNA) NP_009165 (protein) |
NM_016890 (mRNA) NP_058586 (protein) |
||||||||||||
Location | Chr 9: 34.6 - 34.61 Mb | Chr 4: 41.9 - 41.91 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Dynactin 3 (p22), also known as DCTN3, is a human gene.[1]
This gene encodes the smallest subunit of dynactin, a macromolecular complex consisting of 10 subunits ranging in size from 22 to 150 kD. Dynactin binds to both microtubules and cytoplasmic dynein. It is involved in a diverse array of cellular functions, including ER-to-Golgi transport, the centripetal movement of lysosomes and endosomes, spindle formation, cytokinesis, chromosome movement, nuclear positioning, and axonogenesis. This subunit, like most other dynactin subunits, exists only as a part of the dynactin complex. It is primarily an alpha-helical protein with very little coiled coil, and binds directly to the largest subunit (p150) of dynactin. Alternative splicing of this gene generates 2 transcript variants.[1]
[edit] References
[edit] Further reading
- Karki S, LaMonte B, Holzbaur EL (1998). "Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells.". J. Cell Biol. 142 (4): 1023-34. PMID 9722614.
- Karki S, Tokito MK, Holzbaur EL (2000). "A dynactin subunit with a highly conserved cysteine-rich motif interacts directly with Arp1.". J. Biol. Chem. 275 (7): 4834-9. PMID 10671518.
- Mills DR, Jackson CL (2001). "Assignment of p22 dynactin light chain (DCTN3) to human chromosome region 9p13 by radiation hybrid mapping.". Cytogenet. Cell Genet. 92 (1-2): 166. PMID 11306820.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi: . PMID 12477932.
- Lehner B, Semple JI, Brown SE, et al. (2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region.". Genomics 83 (1): 153-67. PMID 14667819.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40-5. doi: . PMID 14702039.
- Humphray SJ, Oliver K, Hunt AR, et al. (2004). "DNA sequence and analysis of human chromosome 9.". Nature 429 (6990): 369-74. doi: . PMID 15164053.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121-7. doi: . PMID 15489334.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173-8. doi: . PMID 16189514.
- Lim J, Hao T, Shaw C, et al. (2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.". Cell 125 (4): 801-14. doi: . PMID 16713569.