DCTN2
From Wikipedia, the free encyclopedia
Dynactin 2 (p50)
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | DCTN2; DCTN50; DYNAMITIN; RBP50 | |||||||||||||
External IDs | OMIM: 607376 MGI: 107733 HomoloGene: 4667 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 10540 | 69654 | ||||||||||||
Ensembl | ENSG00000175203 | ENSMUSG00000025410 | ||||||||||||
Uniprot | Q13561 | Q3TPZ5 | ||||||||||||
Refseq | NM_006400 (mRNA) NP_006391 (protein) |
NM_027151 (mRNA) NP_081427 (protein) |
||||||||||||
Location | Chr 12: 56.21 - 56.23 Mb | Chr 10: 126.67 - 126.68 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Dynactin 2 (p50), also known as DCTN2, is a human gene.[1]
This gene encodes a 50-kD subunit of dynactin, a macromolecular complex consisting of 10-11 subunits ranging in size from 22 to 150 kD. Dynactin binds to both microtubules and cytoplasmic dynein. It is involved in a diverse array of cellular functions, including ER-to-Golgi transport, the centripetal movement of lysosomes and endosomes, spindle formation, chromosome movement, nuclear positioning, and axonogenesis. This subunit is present in 4-5 copies per dynactin molecule. It contains three short alpha-helical coiled-coil domains that may mediate association with self or other dynactin subunits. It may interact directly with the largest subunit (p150) of dynactin and may affix p150 in place.[1]
[edit] References
[edit] Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171-4. PMID 8125298.
- Echeverri CJ, Paschal BM, Vaughan KT, Vallee RB (1996). "Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis.". J. Cell Biol. 132 (4): 617-33. PMID 8647893.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149-56. PMID 9373149.
- Starr DA, Williams BC, Hays TS, Goldberg ML (1998). "ZW10 helps recruit dynactin and dynein to the kinetochore.". J. Cell Biol. 142 (3): 763-74. PMID 9700164.
- Berrueta L, Tirnauer JS, Schuyler SC, et al. (1999). "The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain.". Curr. Biol. 9 (8): 425-8. PMID 10226031.
- Eckley DM, Gill SR, Melkonian KA, et al. (1999). "Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end.". J. Cell Biol. 147 (2): 307-20. PMID 10525537.
- Karki S, Tokito MK, Holzbaur EL (2000). "A dynactin subunit with a highly conserved cysteine-rich motif interacts directly with Arp1.". J. Biol. Chem. 275 (7): 4834-9. PMID 10671518.
- Merdes A, Heald R, Samejima K, et al. (2000). "Formation of spindle poles by dynein/dynactin-dependent transport of NuMA.". J. Cell Biol. 149 (4): 851-62. PMID 10811826.
- Yue L, Lu S, Garces J, et al. (2000). "Protein kinase C-regulated dynamitin-macrophage-enriched myristoylated alanine-rice C kinase substrate interaction is involved in macrophage cell spreading.". J. Biol. Chem. 275 (31): 23948-56. doi: . PMID 10827182.
- Vancoillie G, Lambert J, Haeghen YV, et al. (2001). "Colocalization of dynactin subunits P150Glued and P50 with melanosomes in normal human melanocytes.". Pigment Cell Res. 13 (6): 449-57. PMID 11153697.
- Hoogenraad CC, Akhmanova A, Howell SA, et al. (2001). "Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes.". EMBO J. 20 (15): 4041-54. doi: . PMID 11483508.
- Short B, Preisinger C, Schaletzky J, et al. (2003). "The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes.". Curr. Biol. 12 (20): 1792-5. PMID 12401177.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi: . PMID 12477932.
- Gevaert K, Goethals M, Martens L, et al. (2004). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.". Nat. Biotechnol. 21 (5): 566-9. doi: . PMID 12665801.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40-5. doi: . PMID 14702039.
- Uetake Y, Terada Y, Matuliene J, Kuriyama R (2004). "Interaction of Cep135 with a p50 dynactin subunit in mammalian centrosomes.". Cell Motil. Cytoskeleton 58 (1): 53-66. doi: . PMID 14983524.
- Brill LM, Salomon AR, Ficarro SB, et al. (2004). "Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry.". Anal. Chem. 76 (10): 2763-72. doi: . PMID 15144186.
- Ballif BA, Villén J, Beausoleil SA, et al. (2005). "Phosphoproteomic analysis of the developing mouse brain.". Mol. Cell Proteomics 3 (11): 1093-101. doi: . PMID 15345747.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121-7. doi: . PMID 15489334.
- Ficarro SB, Salomon AR, Brill LM, et al. (2005). "Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites.". Rapid Commun. Mass Spectrom. 19 (1): 57-71. doi: . PMID 15570572.