User talk:Danosaur

From Wikipedia, the free encyclopedia

I don't like the thing red link. Also, I like Frances the Mute better than Songs of Innocene. ^^

 \phi = \frac{ \mu * 10^{6}}{(0.52705 \rho Q_0^{\frac{1}{2}} H_0^{\frac{1}{4}})}
\Phi = \nu (Q_0^{\frac{1}{2}} H_0^{\frac{1}{4}})
 Q = \left( -5116.21298733 ln \left( -0.064905575045 \left( \frac{HP}{SG \left( \frac{n}{1750} \right)^3} - 20.860492 \right) \right) \right)^{0.74234690449878}
 Q = \left( -10317.17608524 ln \left( -0.30460872266329 \left( \frac{HP}{SG \left( \frac{N}{1201} \right)^3} - 5.181141 \right) \right) \right)^{0.59848315640974}

\Delta U = U \sqrt { \left( \frac{ \Delta Q}{Q} \right)^2 + \left( \frac{ \Delta \Delta T_{lm}}{\Delta T_{lm}}\right)^2}



\Delta Q = Q \sqrt{ \left(\frac{\Delta \dot{m}_i}{\dot{m}_i}\right)^2 + \left(\frac{ \Delta T_{i1} }{T_{i1}}\right)^2 + \left(\frac{ \Delta T_{i2} }{T_{i2}}\right)^2 }



\Delta \Delta T_{lm} = \Delta T_{lm} \sqrt{ \left(\frac{ \Delta T_{h1} }{T_{h1}}\right)^2  + \left(\frac{ \Delta T_{h2} }{T_{h2}}\right)^2  + \left(\frac{ \Delta T_{c1} }{T_{c1}}\right)^2  + \left(\frac{ \Delta T_{c2} }{T_{c2}}\right)^2 }

Q = U A \Delta T_m = \dot{m}_h C_{ph} (T_{h1} - T_{h2}) = \dot{m}_h C_{pc} (T_{c1} - T_{c2})

Q = \frac{T_{inner}-T_{outer}}{\frac{1}{h_i A_i} + \frac{ln \frac{r_o}{r_i}}{2 \pi k L} + \frac{1}{h_o A_o}}
ΔTlm

\Delta T_{lm} = \frac{ ( T_{h2} - T_{c2} ) - ( T_{h1} - T_{c1} ) } { ln \left[ \frac{ (T_{h2} - T_{c2}) }{ ( T_{h1} - T_{c1} ) } \right] }

U_i = \frac{1}{\frac{1}{h_i} + \frac{A_i ln \frac{r_o}{r_i} } {2 \pi k L} + \frac{A_i}{A_o} \frac{1}{h_o} + F_i + \frac{A_i}{A_o} F_o}



\dot{Q}_{out}

\dot{Q}_{out} = h A_t \left[ 1 - \frac{NA_f}{A_t} \left( 1 - \eta_f \right) \right ] \left( T_b - T_{\infty} \right)
A_f = 2 \pi \left(r^2_{2c} - r^2_1\right)
A_t = NA_f + 2 \pi r_1 \left(H - Nt\right)
Nu = \frac{hD}{k_{air}} = 0.0529 Re^{0.704}_{max} \quad with \quad Re_{max} = \frac{\rho_{air} u_{max} D }{\mu_{air}} \quad and \quad u_{max} = u_{\infty}


\eta_{overall} = \frac{\dot{W}_{out}}{HHV \dot{m}_{fuel}}


 \Delta Re = \sqrt{\Delta Re_{\rho_a}^2 + \Delta Re_V^2 + \Delta Re_{\mu_a}^2}
 \Delta Re_{\rho_a} = \frac {V D}{\mu_a} \Delta \rho_a
 \Delta Re_{V} = \frac {\rho_a D}{\mu_a} \Delta V_a
 \Delta Re_{\mu_a} = -\frac {\rho_a V D}{\mu_a^2} \Delta \mu_a
 \Delta Re = Re \sqrt{ \left(\frac{\Delta \rho_a}{\rho_a}\right)^2 + \left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta {\mu_a}}{\mu_a}\right)^2}
Failed to parse (Cannot write to or create math output directory): \Delta Pr = Pr \sqrt{ \left(\frac{\Delta \mu_a}{\mu_a}\right)^2 + \left(\frac{\Delta C_p}{C_p}\right)^2 + \left(\frac{\Delta {k_a}}{k_a}\right)^2}
ΔReΔPr
 \Delta Nu_1 = \sqrt{ \Delta Nu_{1_{Re}}^2 + \Delta Nu_{1_{Pr}}^2 }
 \Delta Nu_1 = \sqrt{ \left(0.2912 Pr^{0.3} Re^{-.48} \Delta Re\right)^2 + \left( 0.105 Pr^{-0.7} + 0.168 Pr^{-0.7} Re^{0.52} \Delta Pr\right)^2 }


 m = \sqrt { \frac {h P}{K_s A}}
 h(m,K_s) =  m^2 \frac {K_s A}{P}
 \Delta h_m = \left( \frac {K_s A}{P} 2m \right) \Delta m
 \Delta h_{K_s} = \left(m^2\frac {A}{P} \right) \Delta K_s
 \Delta h = \sqrt { \Delta h_m^2 + \Delta h_{K_s}^2 } = \sqrt {\left(\left( \frac {K_s A}{P} 2m \right) \Delta m\right)^2 + \left(\left(m^2\frac {A}{P}\right) \Delta K_s\right)^2}


 e_2 - e_1 = q - w + \Sigma (h_i + v_i^2 + g z_i) - \Sigma (h_e + v_e^2 + g z_e)
qw = hehi




: -2 \dot{m} v_j = F_p

 k > \frac{4F}{x}
ΣM = 5kx − 15F = 0
 \frac{dh}{\sqrt{h}} = -\frac{C_d a}{A} \sqrt{2 g} dt
 \sqrt{h} = -\frac{C_d a}{A} \frac{\sqrt{2}}{2}\sqrt{g} t + C
 \sqrt{h(0)} = -\frac{C_d a}{A} \frac{\sqrt{2}}{2}\sqrt{g}*0 + C \rightarrow \sqrt{h(0)} = C
\sqrt{h(0)}

 A \frac{dh}{dt} = -C_d a \sqrt{2 g h}

 Q = C_v C_c a \sqrt{2 g h}
u = \sqrt{\frac{g}{2 c}}


x = ut  y = \frac{g t^2}{2}  C_v C_c a \equiv C_d  u = C_v \sqrt{2 g h}  u = \sqrt{2 g h}


 y(0) = 0 \rightarrow 0 = a + b*0 + c*0^2 \rightarrow a = 0
y'(0) = 0  y'(x) = b + 2cx \qquad y'(0) = 0 \rightarrow 0 = b + 2*c*0 \rightarrow b = 0

 m_{1}' = m_{2}' \rightarrow \rho_{1} A_{1} v_{1} = \rho_{2} A_{2} v_{2}
A1v1 = A2v2

p_{1}-p_{2}+\rho g h_{1}-\rho g  h_{2}=\frac{1}{2}\rho  v_{2}^{2}-\frac{1}{2}\rho  v_{1}^{2}

\frac{v^{2}}{2}+g h = 0 \rightarrow v = \sqrt{2 g h}

[edit] DC Meetup notice

Greetings. There is going to be a Washington DC Wikipedia meetup on next Saturday, July 21st at 5pm in DC. Since you are listed in Category:Wikipedians_in_Delaware, I thought I'd invite you to come. I'm sorry about the short notice for the meeting. Hopefully we'll do somewhat better in that regard next time. If you can't come but want to make sure that you are informed of future meetings be sure to list yourself under "but let me know about future events", and if you don't want to get any future direct notices \(like this one\), you can list yourself under "I'm not interested in attending any others either" on the DC meetup page.--Gmaxwell 22:11, 14 July 2007 (UTC)

[edit] Danoair

O_O That was from July, O_O —Preceding unsigned comment added by Grenavitar (talkcontribs) 15:09, 2 December 2007 (UTC)


[edit] Tagalog Wikipedia

Tagalog Wikipedia Campaign March 2008!

Tagalog Wikipedia is campaigning for your participation in writing, editing, assessing and translating articles!
The purpose of this campaign is to expand and improve articles at Tagalog Wikipedia. Your participation will be highly appreciated by the community.

There are over 16,000 articles to view, read, review, edit, and expand, so please visit the Wikipedia Café and the WikiProject Philippines at Tagalog Wikipedia to help out!

The campaign includes seeking your assistance in:

Or just anything you can do to help us just like what you are doing there at the English Wikipedia.

Thank you in advance and regards, Tagalog Wikipedia Community

Finally, Wikipedia is the 7th most visited site in the Philippines. Then why is it that the Tagalog Wikipedia, the Wikipedia in your own language remains unknown to most of the Filipinos? The mission of this campaign is to change that. Will you join us?