Talk:D-Wave Systems
From Wikipedia, the free encyclopedia
As I put in the article, on January 19, 2007 D-Wave announced that they would be demonstrating the first commercial 16-qubit adiabatic quantum computer at two events, one at the Computer History Museum in Mountain View, California on February 13th, 2007 and the second at the Telus World of Science in Vancouver, Canada on February 15th, 2007.[1]
I am hoping that once the event has happened there will be enough interest in this topic that people who know a lot more about the physics, technical details, etc. will edit and add to to this and related pages. It may also be a good idea for someone to create a page about adiabatic quantum computers.
There is a lot of information out there. Here are some external links I have found through a Google search on "adiabatic quantum" and some sites:
- rose.blog - a lot of info in the blog by Dr. Rose
- arXiv.org Search Results - academic papers related to Adiabatic Quantum Computation
- How powerful is adiabatic quantum computation?
- Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation
.. and a lot more
MartinSieg 20:11, 12 February 2007 (UTC)
[edit] Based on pseudoscience
I don't know how to express it, but this company's technology is vaporware and pseudoscience. There are several problems with both the hardware and the computation: (1) there has been no fundamental breakthroughs in the physics required to create a quantum computer (an immediate Nobel event) and (2) it is strongly suspected that quantum computing cannot solve NP-complete problems in polynomial time. I am not a physicist so I will not address (1), however, I am a computer scientists (PhD), although quantum computing is not my particular field. Quantum computing is BQP and not NP, nor is there any known algorithm for computing NP-complete problems in Polynomial time on a quantum computer. If there are no NP->P transformations then this device is at no advantage to a classical computer so saying it `solved the traveling salesman problem' is a little misleading: answers to this problem can be computed in exponential time on a classical machine. I'm not sure how to say this other than that this article (and it's mention at http://en.wikipedia.org/wiki/Analog_computer) is highly suspect. I do not believe that the pseudoscience or fraudulent claims should be allowed in reference material. Would it be possible to mark this to make the reader wary?
Response: You raise some good points. However, you admit that you are neither a physicist nor a quantum computing specialist; whereas D-Wave employs several physicists and quantum computing specialists. Thus it's quite possible that they know something that you and the rest of us do not. Further, since D-Wave is a commercial enterprise, not an academic organization, the more significant their breakthroughs, the less likely they would be to reveal the details. So, hopefully, D-Wave will eventually demonstrate a system that behaves like some kind of "quantum" computer should and also performs as well as they predict. -- Red Cedar Salmon 20:46, 16 July 2007 (UTC)
[edit] Article states that NP-complete problems "not exactly solvable"?
According to the article, the company's CTO has stated that 'NP-complete problems "are probably not exactly solvable, no matter how big, fast or advanced computers get"'.
This strikes me as a very odd thing to say. As I understand it, all NP-complete problems are by definition in NP, which means that they must be exactly solvable, or their solutions could not be verifiable in polynomial time, which is one of the defining attributes of NP problems, even if you need a nondeterministic oracle to produce the candidate correct result. What's going on here? -- The Anome 10:00, 14 February 2007 (UTC)
- Agreed. From what I've read an NP-complete problem is one that is definitly solvable, (so we could build an algorithm to solve it), but that it would take an unreasonable amount of time to reach the solution. A QC page from NEC states that to completely factor a 300-digit number would take ~10 million years on a conventional computer, but only "several tens of seconds" on a QC. http://www.nec.co.jp/rd/Eng/innovative/E3/top.html Sahuagin 15:04, 16 February 2007 (UTC)
- After reading what Dr. Rose wrote, I think what he means is that in an NP-complete problem, you never really know if your answer is the best possible answer (IE: An exact solution). If instead of only aiming for the single best answer, you provide a threshold that determines what you would consider to be a sufficient answer, then the computer can stop when it finds a sufficient answer.
- Now, I don't get though why the computer couldn't just run through ALL possible solutions, selecting the best one. From what I have read about QC's thus far, that is what I thought they would be used for. To me what he explained sounds like a conventional computing solution to NP-complete problems. If a QC can only give you an adequate answer, and not the exact answer, then what is the point of a QC? Sahuagin 15:17, 16 February 2007 (UTC)
By "probably not exactly solvable" he was stating that it was likely that P=NP is not the case. It's currently the case that solutions may be found to NP problems, but with a very high cost in terms of speed.125.14.79.155 16:46, 14 May 2007 (UTC)
[edit] NPOV
An earlier version of this article read like a company press release. I've toned it down a bit, but it still makes no mention of any of the skeptical opinions which have been expressed about this demonstration (for example, see [1]), and the apparent lack, so far, of independent technical verification of their results. -- The Anome 10:14, 14 February 2007 (UTC)
[edit] NP-Complete ... very hard
Thank you to The Anome for contributions to this page. I see that you also moved Orion quantum computing system here, which I agree makes sense, at least until there is consensus that it is a proven system of historical significance. I guess my original version sounded like a press release because most of the information I found on the web was written by Dr. Rose. That's why we need people who know more about the related topics to revise the page.
My limited understanding of NP-complete problems and what Dr. Rose was saying about them is that they are not solvable in polynomial time by any foreseeable technology, and it is already accepted that we can accomplish a lot with ansers that are "good enough". If someone can clarify this in the article, please go ahead.
MartinSieg 15:33, 14 February 2007 (UTC)
- "That's why we need people who know more about the related topics to revise the page."
This includes criticism. WP is not a brochure. -Ste|vertigo 21:52, 14 February 2007 (UTC)
[edit] Separate info about company and tech
Perhaps this article should be strictly about D-Wave, including its history, people, goals, claims, and of course how others view it (skeptics, etc.).
My intent for the article about the Orion quantum computing system, which was merged with this one, was to provide information about the technology itself. Perhaps we need an article on adiabatic quantum computing instead? I feel that the article Adiabatic process (quantum mechanics) is insufficient. —The preceding unsigned comment was added by MartinSieg (talk • contribs) 04:29, 15 February 2007 (UTC).
At the moment, the company and the product are inseparable, since so far, the Orion quantum computing system is not available for sale, and no-one has one, apart from D-Wave Systems themselves. When these machines are widely deployed, or become famous in a context that is separate from their creator company, then the product itself will of course deserve its own article, in the same way as any notable computer product. -- The Anome 10:01, 15 February 2007 (UTC)
[edit] Cliff Notes on Quantum Computing
Yes, an NP-complete problem is in NP by definition, and is therefore a yes-no question by definition and is not amenable to approximate solutions. However, there are optimization problems that can be called FNP-complete: They are NP-hard, and if P = NP, then they are in (the function version of) P. What Rose means is that we should be happy with approximate solutions to FNP-complete optimization problems, even though exact solutions are out of reach, even with quantum computers.
However, there is a theorem from the 1980s that for many FNP-complete problems, in particular for the travelling salesman problem, there is a threshold beyond which approximate solutions are already FNP-complete. This is contrary to what some of the press releases from D-Wave imply. On the other hand, in some places Rose steps back from this implication, and says that his computer might only provide some speedup for optimization problems in FNP, maybe only a polynomial speedup rather than an exponential speedup. If so, it would have no real bearing on NP-hardness, because all such notions allow a polynomial fudge factor.
The disclaimers from D-Wave imply that the Orion is not really a quantum computer, but a quantum special-purpose device. If you set aside quantum mechanics for the moment, it is easy to understand that a computer is suppose to be general-purpose, or in technical terms, Turing-complete. If it is not Turing-complete, then it is an SPD. Likewise a quantum computer should be quantumly Turing-complete. Since there is no such claim in the case of the "Orion" device, it is at best a quantum SPD. You can call it clasically Turing-complete if you count the classical computer that controls it. The technical debate at the moment is whether D-Wave's demo has any strength even as a quantum SPD, or if it is really a classical facsimile.
If some company, D-Wave or Q-Wave or someone else, built a real quantum computer, it still would not be able to try all things in parallel and solve NP-complete problems. Quantum computing should really be thought of as "randomized computing on steroids". Randomized computing is a kind of parallel computing, in the sense that if you flip a coin, you can imagine parallel worlds in which the answer was both heads and tails. It is a weak kind of parallelism that has some computational value, but only a limited amount. Quantum computing is similarly limited, even though it is exponentially faster than classical computing (even the randomized kind) for certain structured problems such as factoring. It is NOT thought to be all that much faster for NP-complete problems. Greg Kuperberg 21:26, 17 February 2007 (UTC)
[edit] Needed Content and Fixes
The article is all about the recent announcement of D-Wave's and not the company itself. Content around this was needed. Material from archived versions of company website added. Content arround Orion demos pushed down the page. The quote of Andrew Steane was made to the Guardian newspaper so that source should be found and cited. Positive opinion on the announcement along with a call for peer review was made by David Deutsch, citation needed. Shadesofgrey 00:47, 19 February 2007 (UTC)
- I study quantum computing and you have my attention. What do you want to know? Greg Kuperberg 04:23, 19 February 2007 (UTC)
-
- Greg, what is needed is a description of an adiabatic quantum computer. Shadesofgrey 04:52, 20 February 2007 (UTC)
[edit] Trivia
Should we note that their name is most likely a pun on d-wave as in angular momentum state, d-wave superconductivity, etc.?--Lionelbrits 16:40, 25 March 2007 (UTC)
[edit] Speaking Truth to Parallelism
For additional skepticism, see also: Shtetl-Optimized blog by Scott Aaronson [2] [3]-69.87.200.74 01:43, 23 April 2007 (UTC)
[edit] Deutsch on D-Wave
For an interview with David Deutsch, expressing skepticism about what precisely D-Wave has achieved but optimism about the general prognosis for quantum computing, see: Wired 2007-02, The Father of Quantum Computing [4] Iain David Stewart 22:43, 15 May 2007 (UTC)
[edit] Nov 2007 demo
http://www.news.com/D-Waves-quantum-computer-ready-for-latest-demo/2100-1010_3-6217842.html?tag=newsmap -Ravedave 22:08, 12 November 2007 (UTC)