User:Cybersnoopy/test

From Wikipedia, the free encyclopedia

[edit] test


\begin{align}
\Gamma(a,x) &= \int_x^\infty  t^{a-1} \exp(-t) dt \\
Q(a,x) &= 1/\Gamma(a) \int_x^\infty  t^{a-1} \exp(-t) dt
\end{align}

[edit] sample

Change (28) to Indefinite Integral


\begin{align}
y & = A(t)\exp \int \frac{\partial x}{x+B(t)\exp[\frac{1}{\bar{\sigma}}\int \partial \log x]}\\
  & = A(t)\exp \int \frac{x^{-1}\partial x}{1+B(t)x^{-1}\{\exp[\int \partial \log x]\}^\frac{1}{\bar{\sigma}}}\\
  & = A(t)\exp \int \frac{x^{-1}\partial x}{1+B(t)x^{-1}\{\exp(\log x)\}^\frac{1}{\bar{\sigma}}}\\
  & = A(t)\exp \int \frac{x^{-1}dx}{1+B(t)x^{\frac{1}{\bar{\sigma}}-1}}\\
  & = A(t)\exp \int \frac{d(\log x)}{1+B(t)\exp[(\frac{1}{\bar{\sigma}}-1)\log x]}
\end{align}

Let w = logx, then the formular turns to be

y = A(t)\exp \int \frac{dw}{1+B(t)\exp[(\frac{1}{\bar{\sigma}}-1)w]}

On the other hand, we have (adapted from the Integral Formula Table)

\int \frac{dx}{a+be^{mx}}=\tfrac{1}{am}[mx-\log(a+be^{mx})]

In this case, a = 1,b = B(t) and m=\frac{1}{\bar{\sigma}}-1, use the formula above, we get


\begin{align}
y(x,t) & = A(t) \exp\{ \frac{1}{\frac{1}{\bar{\sigma}}-1} [(\frac{1}{\bar{\sigma}}-1)w - \log(1+B(t)e^{\frac{1}{(\bar{\sigma}}-1)w})]\}\\
       & = A(t) \exp\{ \frac{1}{\frac{1}{\bar{\sigma}}-1} [(\frac{1}{\bar{\sigma}}-1)\log x - \log(1+B(t)e^{\frac{1}{(\bar{\sigma}}-1)\log x})]\}\\
       & = A(t) \exp\{ \frac{-1}{\frac{1}{\bar{\sigma}}-1} [-(\frac{1}{\bar{\sigma}}-1)\log x + \log(1+B(t)x^{(\frac{1}{\bar{\sigma}}-1)})]\}\\
       & = A(t) [\exp\{  -\log x^{\frac{1}{\bar{\sigma}}-1} + \log(1+B(t)x^{\frac{1}{(\bar{\sigma}}-1)})\}]^{\frac{-1}{\frac{1}{\bar{\sigma}}-1}}\\
       & = A(t) [\exp\{\log(\frac{1+B(t)x^{\frac{1}{(\bar{\sigma}}-1)}}{x^{\frac{1}{\bar{\sigma}}-1}})\}]^{\frac{-\bar{\sigma}}{1-\bar{\sigma}}}\\
       & = A(t) (x^{-(\frac{1-\bar{\sigma}}{\bar{\sigma}})}+B(t))^{-(\frac{\bar{\sigma}}{1-\bar{\sigma}})}\\
\end{align}