Cutler's bar notation
From Wikipedia, the free encyclopedia
In mathematics, Cutler's Bar Notation is a notation system for large numbers, introduced by Mark Cutler in 2004. The idea is based on iterated exponentiation in much the same way that exponentiation is iterated multiplication.
Contents |
[edit] Introduction
A regular exponential can be expressed as such:
However, these expressions become arbitrarily large when dealing with systems such as Knuth's up-arrow notation. Take the following:
Cutler's bar notation shifts these exponentials counterclockwise, forming . A bar is placed above the variable to denote this change. As such:
This system becomes effective with multiple exponent, when regular denotation becomes too cumbersome.
At any time, this can be further shortened by rotating the exponential counter-clockwise once more.
The same pattern could be iterated a fourth time, becoming . For this reason, it is sometimes referred to as Cutler's circular notation.
[edit] Advantages and Drawbacks
The Cutler Bar Notation can be used to easily express other notation systems in exponent form. It also allows for a flexible summarisation of multiple copies of the same exponents, where any number of stacked exponents can be shfted counter-clockwise and shortened to a single variable. The Bar Notation also allows for farily rapid composure of very large numbers. For instance, the number would contain more than a googolplex digits, whilst remaining fairly simple to write with and remember.
However, the system reaches a problem when dealing with different exponents in a single expression. For instance, the expression could not be summarised in Bar notation. Additionally, the exponent can only be shifted thrice before it returns to its original position, making a five degree shift indistinguishable from a one degree shift. Some have suggested using a double and triple bar in subsequent rotations, though this presents problems when dealing with ten and twenty degree shifts.
[edit] See also
[edit] References
- Mark Cutler, Physical Infinity, 2004
- Daniel Geisler, tetration.org
- R. Knobel. "Exponentials Reiterated." American Mathematical Monthly 88, (1981)