Cray
From Wikipedia, the free encyclopedia
This article or section is written like an advertisement. Please help rewrite this article from a neutral point of view. Mark blatant advertising which would require a fundamental rewrite in order to become encyclopedic for speedy deletion, using {{db-spam}}. (April 2008) |
Cray Inc. | |
---|---|
Type | Public (NASDAQ: CRAY) |
Founded | 1972 as Cray Research, Inc. |
Founder | Seymour Cray |
Headquarters | Seattle, Washington |
Products | Supercomputers |
Website | cray.com |
Cray Inc. (NASDAQ: CRAY) is a supercomputer manufacturer based in Seattle, Washington. The company's predecessor, Cray Research, Inc. (CRI), was founded in 1972 by computer designer Seymour Cray. Already a legend in his field by this time, Cray put his company on the map in 1976 with the release of the Cray-1 vector computer. Cray went on to form the spin-off Cray Computer Corporation (CCC), in 1989, which went bankrupt in 1995, while Cray Research was bought by SGI the next year. Cray Inc. was formed in 2000 when Tera Computer Company purchased the Cray Research Inc. business from SGI and adopted the name of its acquisition.
Contents |
[edit] Company history
[edit] ERA, CDC and Cray Research: 1950 to 1996
Seymour Cray began working in the computing field in 1950 when he joined Engineering Research Associates (ERA) in Saint Paul, Minnesota. There, he helped to create the ERA 1103, regarded as the first successful scientific computer. ERA eventually became part of UNIVAC, and started to be phased out. He left the company in 1960, a few years after some former ERA employees set up Control Data Corporation (CDC). He eventually set up a lab at his home in Chippewa Falls, Wisconsin, about 85 miles to the east.
Cray had a string of successes at CDC, including the CDC 6600 and CDC 7600. However the company ran into financial difficulties in the late 1960s and development funds for his follow-on CDC 8600 became scarce. When he was told the project would have to be put "on hold" in 1972, Cray left to form his own company, Cray Research Inc., with research and development facilities in Chippewa Falls and the business headquarters in Minneapolis.
The Cray-1 was a major success when it was released, faster than all computers at the time except for the ILLIAC IV. The first system was sold within a month for US$8.8 million. Seymour Cray continued working, this time on the Cray-2, though it only ended up being marginally faster than the Cray X-MP, developed by another team at the company.
He soon left the CEO position to become an independent contractor. Cray started a new VLSI technology lab for the Cray-2 in Boulder, Colorado, Cray Laboratories, in 1979. The Labs were closed in 1982, but Cray later headed a similar spin-off in 1989, forming Cray Computer Corporation (CCC) in Colorado Springs. Seymour Cray worked there on the Cray-3 project, the first attempt at major use of gallium arsenide (GaAs) semiconductors in computing. However, the changing political climate (collapse of Warsaw Pact and the end of Cold War) resulted in poor sales (only one Cray-3 was delivered), and the company fell by the wayside, eventually filing for bankruptcy in 1995. CCC's remains then began Cray's final corporation SRC Computers, Inc. which still exists.
Cray Research, with Steve Chen, continued with the line originally started with the X-MP, adding the Cray Y-MP and then Cray C90 and Cray T90, developments of that series. All of these machines essentially comprised multiple Cray-1's in a box, two to four in the X-MP, up to thirty-two in the later machines. Because of the uncertainty of the Cray-2 project, a number of Cray-object-code compatible "Crayette" firms started: Scientific Computer Systems (SCS), American Supercomputer, Supertek, and perhaps at least one other firm. Not meant to compete against Cray, these firms attempted less expensive, slower CMOS versions of the X-MP with the release of the COS operating system (SCS) and the CFT Fortran compiler. All these firms also considered National labs (LANL/LLNL) developed CTSS operating system as well before caving in to the tide of Unixes.
In the late 1980s the high-performance market began to be overtaken by a series of massively parallel computers, led by pioneers Thinking Machines, Kendall Square Research, nCUBE, MasPar and Meiko Scientific. At first Cray Research denigrated such approaches, complaining that developing software to effectively use the machines was difficult—which was true in the era of the ILLIAC IV, but becoming less so each day. Eventually Cray realized that the approach was likely the only way forward and started a five year project to capture the lead in this area as well. The result was the DEC Alpha-based Cray T3D and Cray T3E series, which ironically left Cray as the only remaining supercomputer vendor in the market by 2000.
Cray computers were extremely expensive machines, and the number of units sold were small compared to ordinary mainframes. Thus, most sites with a Cray installation considered it quite prestigious to be a member of the "exclusive club" of Cray operators. This perception extended to countries as well. To boost the perception of exclusivity, Cray Research's marketing department had promotional neckties made with a mosaic of tiny national flags illustrating the "club of Cray-operating countries".[citation needed](Computer History Museum, Cray 1 30th Anniversary recorded presentation, 2006)
In the late 1980s and early 1990s a number of new vendors introduced small supercomputers, known as minisupercomputers (as opposed to superminis), which started to erode the market that would have otherwise considered a low-end Cray machine. Particularly popular was the Convex Computer series, as well as a number of small-scale parallel machines from companies like Pyramid Technology and Alliant Computer Systems. One such company was Supertek, whose S-1 machine was an air-cooled CMOS implementation of the X-MP processor. Cray purchased Supertek in 1990 and sold the S-1 as the Cray XMS, but the machine proved problematic. Meanwhile their not-yet-completed S-2, a Y-MP clone, was later offered as the Cray Y-MP EL (later becoming the EL90 series), which started to sell in reasonable numbers in 1991/2. These systems were sold to smaller companies, notably in oil exploration. This line evolved into the Cray J90 and eventually the Cray SV1 in 1998.
In December 1991, Cray purchased some of the assets of Floating Point Systems, another minisuper vendor who had moved into the file server market with their SPARC-based Model 500 line.[1] These SMP machines scaled up to 64 processors and ran a modified version of Sun Microsystems' Solaris. Cray set up Cray Research Superservers, Inc. (later the Business Systems Division) to sell this system as the Cray S-MP, later replacing it with the Cray CS6400. In spite of these machines being some of the most powerful available when applied to appropriate workloads Cray was never very successful in this market, possibly due to it being so foreign to their existing market niche.
[edit] Silicon Graphics: 1996 to 2000
Cray Research merged with Silicon Graphics (SGI) in February 1996. At the time the industry was highly critical of the move, noting that there was little overlap between the two companies in terms of market or technology. Founder Seymour Cray was killed in a traffic accident later that year.
SGI immediately sold off the Superservers business to Sun, who quickly turned the UltraSPARC-based Starfire project then under development into the extremely successful Enterprise 10000 range of servers.
SGI did use a number of Cray technologies in their attempt to move from the graphics workstation market into supercomputing. Key among these was the use of the Cray-developed HIPPI data-bus and details of the interconnects used in the T3 series.
SGI's long-term strategy was to merge their high-end server line with Cray's product lines in two phases, code-named SN1 and SN2 (SN standing for "Scalable Node"). The SN1 was intended to replace the T3E and SGI Origin 2000 systems and later became the SN-MIPS or SGI Origin 3000 architecture. The SN2 was originally intended to unify all high-end/supercomputer product lines including the T90 into a single architecture. This goal was never achieved before SGI divested itself of the Cray business, and the SN2 name was later associated with the SN-IA or SGI Altix 3000 architecture.
Under SGI ownership, one new Cray model line, the SV1, was launched in 1998. This was a clustered SMP vector processor architecture, developed from J90 technology.
SGI set up a separate Cray Research Business Unit in August 1999 in preparation for detachment. On March 2, 2000, the unit was sold to Tera Computer Company. Tera Computer Company was then renamed Cray Inc. when the deal closed on April 4.
[edit] Cray Inc.: 2000 to present
After the Tera merger, the Tera MTA system was relaunched as the Cray MTA-2. This was not a commercial success and shipped to only two customers. Cray Inc. also badged the NEC SX-6 supercomputer as the Cray SX-6 and acquired exclusive rights to sell the SX-6 in the USA, Canada and Mexico.
In 2002, Cray Inc. announced their first new model, the Cray X1 combined architecture vector / MPP supercomputer. Previously known as the SV2, the X1 is the end result of the earlier SN2 concept originated during the SGI years. In May 2004, Cray was announced to be one of the partners in the U.S. Department of Energy's fastest-computer-in-the-world project to build a 50 teraflops machine for the Oak Ridge National Laboratory. As of November 2004, the Cray X1 has a maximum measured performance of 5.9 teraflops, being the 29th fastest supercomputer in the world. Since then the X1 has been superseded by the X1E, with faster dual-core processors.
On 4 October 2004, the company announced the Cray XD1 range of entry-level supercomputers which use dual-core 64-bit AMD Opteron CPUs running Linux. This system was previously known as the OctigaBay 12K before Cray's acquisition of that company. The XD1 provides one Xilinx Virtex II Pro field-programmable gate array (FPGA) with each node of four Opteron processors. The FPGAs can be configured to embody various digital hardware designs and so can augment the processing or input/output capabilities of the Opteron processors. Furthermore, each FPGA contains a pair of PowerPC 405 processors; these can add to the already considerable power of a single node.
Also in 2004, Cray completed the Red Storm system for Sandia National Laboratories. This has processors clustered in 96-processor cabinets, a theoretical maximum of 300 cabinets in a machine, and a design speed of 41.5 teraflops. The Cray XT3 massively parallel supercomputer is a commercialized version of Red Storm, similar in many respects to the earlier T3E architecture, but, like the XD1, using AMD Opteron processors. The Cray XT4, introduced in 2006 added support for DDR2 memories, newer dual-core and future quad-core Opteron processors. The XT4 also allows FPGA chips to be plugged directly into processor sockets, unlike the XD1, which required a dedicated socket for the FPGA coprocessor. The XT4 also uses the second generation SeaStar2 communication coprocessor. [1]
On 13 November 2006, Cray announced a new system, the Cray XMT, based on the MTA series of machines, and expects to ship the machines in 2007. [2] [3]. This system combines multi-threaded processors, as used on the original Tera systems, and the SeaStar2 interconnect used by the XT4. By reusing ASICs, boards, cabinets, and system software used by the comparatively higher volume XT4 product, the cost of making the very specialized MTA system can be reduced.
In 2006, Cray announced a new vision of products dubbed 'Adaptive Supercomputing'[2]. The first generation of such systems, dubbed the Rainier Project, use a common interconnect network, programming environment, cabinet design, and I/O subsystem. These systems include the XT4, and the XMT. The second generation, launched as the XT5h, allows a system to combine compute elements of various types into a common system, sharing infrastructure. The XT5h is able to combine Opteron, vector, multithreaded, and FPGA compute processors in a single system. Cascade[3] systems will make use of future Opteron processors, and a "Multithreaded Vector Processor" (MVP) accelerator; this processor can switch between vector-style operation, like that of the X2 processor, and multithreaded operation like the XMT. These systems, codenamed Marble and Granite, are scheduled to be introduced in 2010-2011.
[edit] References
- ^ Jim Mallory. "Cray Research names manager of new subsidiary - Floating Point Systems' Martin Buchanan", Newsbytes News Network, January 3, 1992. Retrieved on 2007-08-05.
- ^ Cray's Adaptive Supercomputing - A Paradigm Shift. HPCwire. Retrieved on 2007-10-15.
- ^ Scott, Steve. Thinking Ahead: Future Architectures from Cray (pdf). Retrieved on 2007-10-15.
- Murray, Charles J. (1997). The Supermen: The Story of Seymour Cray and the Technical Wizards behind the Supercomputer. John Wiley & Sons. ISBN 0-471-04885-2.
[edit] External links
- Cray, Inc. Corporate Website
- spring 2007 technical workshop
- Cray Research and Cray Inc. history
- Cray-Cyber.org - Working Cray machines with free login
- Yahoo! - Cray Inc. Company Profile
- Top 500 Supercomputers
- Fred Gannett's Cray Supercomputer FAQ
- Cray User Group
- Cray Research Alumni Site
- DigiBarn Computer Museum: Cray Supercomputers and Memorabilia
- Cray headquarters is at coordinates
|