Cowpea mosaic virus

From Wikipedia, the free encyclopedia

Cowpea mosaic virus (CPMV)
Virus classification
Group: IV: (+)sense RNA Viruses
Family: Comoviridae
Genus: Comovirus
Species: Cowpea mosaic virus
Synonyms

cowpea mosaic virus, SB isolate

The Cowpea mosaic virus is a plant mosaic virus of the comovirus group. Infection of a cowpea leaf results in high virus yields (1-2 g/kg). Genomes consists of 2 molecules of positive-strand RNA (RNA-1 and RNA-2) which are separately encapsidated. Each is expressed by a polyprotein processing strategy. Particles are 28nm in diameter and contain 60 copies each of a Large (L) and Small (S) coat protein arranged pseudo T=3 (P=3) symmetry. The structure is well characterised to atomic resolution and the viral particles are thermostable.

It can infect the Black-eyed pea, as it displays a number of features that can be exploited for nanoscale biomaterial fabrication and because its genetic, biological and physical properties are well characterised. CPMV can be isolated readily from plants. There are many stable mutants already prepared that allow specific modification of the capsid surface. It is possible to attach a number of different chemicals to the virus surface[1][2] and to construct multilayer arrays of such nanoparticles on solid surfaces. This gives the natural or genetically engineered nanoparticles a range of properties which could be useful in nanotechnological applications such as biosensors, catalysis and nanoelectronic devices.

Some examples include using CPMV particles to amplify signals in microarray based sensors. In this application, the virus particles separate the fluorescent dyes used for signaling in order to prevent the formation of non-fluorescent dimers that act as quenchers.[3] Another example is the use of CPMV as a nanoscale breadboard for molecular electronics.[4]

[edit] References

  1. ^ Q. Wang, T. Lin, L. Tang, J.E. Johnson, and M.G. Finn.Angew. Chem. Int. Ed.,41(3),459 (2002)
  2. ^ Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless, and M.G. Finn. J. Am. Chem. Soc.,125,3192 (2003).
  3. ^ Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. Carissa M. Soto, Amy Szuchmacher Blum, Nikolai Lebedev, Gary J. Vora, Carolyn E. Meador, Angela P. Won, Anju Chatterji, John E. Johnson, and Banahalli R. Ratna, Journal of the American Chemical Society, 128, 5184 (2006).
  4. ^ An Engineered Virus as a Scaffold for Three-Dimensional Self-Assembly on the Nanoscale. Amy Szuchmacher Blum, Carissa M. Soto, Charmaine D. Wilson, Tina L. Brower, Steven K. Pollack, Terence L. Schull, Anju Chatterji, Tianwei Lin, John E. Johnson, Christian Amsinck, Paul Franzon, Ranganathan Shashidhar and Banahalli Ratna, Small, 7, 702 (2005).

[edit] External links