Image:Cornu Spiral.svg

From Wikipedia, the free encyclopedia

Cornu_Spiral.svg (SVG file, nominally 480 × 460 pixels, file size: 67 KB)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

A Cornu spiral, produced by a parametric plot of the Fresnel integrals: (x,y)=(C(t),S(t))\, where t runs from -7 (bottom left) to 7 (top right). The function converges to the points shown as t tends to positive or negative infinity.

Source

self-made, Mathematica and Inkscape

Date

22/02/2008

Author

Inductiveload

Permission
(Reusing this image)
Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-


[edit] Mathematica Code

ParametricPlot[
 {FresnelC[Sqrt[2/\[Pi]] t]/Sqrt[2/\[Pi]],
  FresnelS[Sqrt[2/\[Pi]] t]/Sqrt[2/\[Pi]]},
 {t, -7, 7}]

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current03:05, 23 February 2008480×460 (67 KB)Inductiveload ({{Information |Description=A Cornu spiral, produced by a parametric plot of the w:Fresnel integrals: <math>(x,y)=(C(t),S(t))\,</math> where ''t'' runs from -7 (bottom left) to 7 (top right). The function converges to the points shown as ''t'' tends t)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):