COPE (gene)
From Wikipedia, the free encyclopedia
Coatomer protein complex, subunit epsilon
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | COPE; FLJ13241; epsilon-COP | |||||||||||||
External IDs | OMIM: 606942 MGI: 1891702 HomoloGene: 5254 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 11316 | 59042 | ||||||||||||
Ensembl | ENSG00000105669 | ENSMUSG00000055681 | ||||||||||||
Uniprot | O14579 | Q9D1J2 | ||||||||||||
Refseq | NM_007263 (mRNA) NP_009194 (protein) |
NM_021538 (mRNA) NP_067513 (protein) |
||||||||||||
Location | Chr 19: 18.87 - 18.89 Mb | Chr 8: 73.23 - 73.24 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Coatomer protein complex, subunit epsilon, also known as COPE, is a human gene.[1]
The product of this gene is an epsilon subunit of coatomer protein complex. Coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles. It is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. Coatomer complex consists of at least the alpha, beta, beta', gamma, delta, epsilon and zeta subunits. Alternatively spliced transcript variants encoding different isoforms have been identified.[1]
[edit] References
[edit] Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Orcl L, Palmer DJ, Amherdt M, Rothman JE (1993). "Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol.". Nature 364 (6439): 732–4. doi: . PMID 8355790.
- Faulstich D, Auerbach S, Orci L, et al. (1996). "Architecture of coatomer: molecular characterization of delta-COP and protein interactions within the complex.". J. Cell Biol. 135 (1): 53–61. PMID 8858162.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Pavel J, Harter C, Wieland FT (1998). "Reversible dissociation of coatomer: functional characterization of a beta/delta-coat protein subcomplex.". Proc. Natl. Acad. Sci. U.S.A. 95 (5): 2140–5. PMID 9482852.
- Shima DT, Scales SJ, Kreis TE, Pepperkok R (1999). "Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes.". Curr. Biol. 9 (15): 821–4. PMID 10469566.
- de La Vega LA, Stockert RJ (1999). "The cytoplasmic coatomer protein COPI. A potential translational regulator.". J. Biol. Chem. 274 (44): 31135–8. PMID 10531302.
- Eugster A, Frigerio G, Dale M, Duden R (2000). "COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP.". EMBO J. 19 (15): 3905–17. doi: . PMID 10921873.
- Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination.". Genome Res. 10 (11): 1788–95. PMID 11076863.
- Wiemann S, Weil B, Wellenreuther R, et al. (2001). "Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs.". Genome Res. 11 (3): 422–35. doi: . PMID 11230166.
- Simpson JC, Wellenreuther R, Poustka A, et al. (2001). "Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.". EMBO Rep. 1 (3): 287–92. doi: . PMID 11256614.
- Zhang T, Hong W (2001). "Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport.". J. Biol. Chem. 276 (29): 27480–7. doi: . PMID 11323436.
- Xu Y, Martin S, James DE, Hong W (2003). "GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus.". Mol. Biol. Cell 13 (10): 3493–507. doi: . PMID 12388752.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Gevaert K, Goethals M, Martens L, et al. (2004). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.". Nat. Biotechnol. 21 (5): 566–9. doi: . PMID 12665801.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Grimwood J, Gordon LA, Olsen A, et al. (2004). "The DNA sequence and biology of human chromosome 19.". Nature 428 (6982): 529–35. doi: . PMID 15057824.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Wiemann S, Arlt D, Huber W, et al. (2004). "From ORFeome to biology: a functional genomics pipeline.". Genome Res. 14 (10B): 2136–44. doi: . PMID 15489336.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi: . PMID 16189514.