Consistent estimator

From Wikipedia, the free encyclopedia

In statistics, a consistent sequence of estimators is one which converges in probability to the true value of the parameter. In many cases, this is referred to simply as a consistent estimator.

A sequence is said to be strongly consistent if it converges almost surely to the correct value.

Contents

[edit] Formal definition

Consider a set of samples X_1,X_2,\ldots from a given probability distribution f with an unknown parameter \theta\in\Theta, where Θ is the parameter space that is a subset of \mathbb{R}^m. Let U_n=U_n(X_1,\ldots,X_n) be an estimator of θ based on the first n samples.

We say that the sequence of estimators {Un} is consistent (or that U is a consistent estimator of θ), if Ui converges in probability to θ for every \theta\in\Theta. That is, for every \varepsilon>0,

\lim_{n\rightarrow\infty}P(|U_n-\theta|\geq\varepsilon)=0

for all \theta\in\Theta.

[edit] Properties

Suppose U is an estimator of θ such that the sequence {Un} is consistent. If \alpha_n\to\alpha\in\mathbb{R} and \beta_n\to\beta\in\mathbb{R}^m are two convergent sequences of constants with 0<|\alpha|<\infty and |\beta|<\infty, then the sequence {Vn}, defined by V_n \triangleq \alpha_n U_n+\beta_n is a consistent estimate of αθ + β.

[edit] Proof

First, observe that

\begin{align}
|V_n-(\alpha\theta+\beta)| &=   |\alpha_n U_n+\beta_n-\alpha\theta-\beta|\\
                           &\le |\alpha_nU_n-\alpha\theta|+|\beta_n-\beta|\\
                           &=   |\alpha_nU_n-\alpha_n\theta+\alpha_n\theta-\alpha\theta|+|\beta_n-\beta|\\
                           &\le |\alpha_nU_n-\alpha_n\theta|+|\alpha_n\theta-\alpha\theta|+|\beta_n-\beta|\\
                           &=   |\alpha_n||U_n-\theta|+|\alpha_n-\alpha||\theta|+|\beta_n-\beta|.
\end{align}

This implies

\begin{align}
&    P(|V_n-(\alpha\theta+\beta)|\ge\varepsilon) \\
&\le P(|\alpha_n||U_n-\theta|+|\alpha_n-\alpha| |\theta|+|\beta_n-\beta|\ge\varepsilon) \\
&=   P\left(|U_n-\theta|\ge\frac{\varepsilon-|\beta_n-\beta|-|\alpha_n-\alpha||\theta|}{|\alpha_n|}\right).
\end{align}

As n\to\infty, we have |\beta_n-\beta|\to 0, |\alpha_n-\alpha||\theta|\to 0, and |\alpha_n|\to|\alpha|\ne 0. So the last expression goes to 0 as n\to\infty. Therefore,

\lim_{n\to\infty}P(|V_n-(\alpha\theta+\beta)|\ge\varepsilon)=0,

and thus {Vn} is a consistent sequence of estimators of αθ + β. Q.E.D.

[edit] Further reading

  • Lehmann, E. L.; Casella, G. (1998). Theory of Point Estimation. Springer, 2nd ed. ISBN 0-387-98502-6. 
Languages