Talk:Complete measure
From Wikipedia, the free encyclopedia
In measure theory, a complete measure is a measure in which every subset of every null set is measurable (having measure 0).
Why do they say "every" null set ... i thought there could be only one, unique null set --> no elements, empty set !! ... and then "every subset of every null set" !! ... a null set will have ony one subset always (itself, and nothing else).
So, what is the meaning of "every subset of every null set"
-
- A null set is not to be confused with the empty set... a null set is a measurable set (a set element of a sigma algebra which itself has a measure attached to it) that has measure zero. A countable set of points in the reals has Lebesgue measure zero for example. In fact, there's more subtleties about a null set than it being of measure zero, see the article about it.
I have no idea how to fix this, but this article doesn't come up under a search for "complete measure space" and it ought to. 134.50.3.40 (talk) 10:59, 10 March 2008 (UTC)