Talk:Common knowledge (logic)

From Wikipedia, the free encyclopedia

This article is part of WikiProject Game theory, an attempt to improve, grow, and standardize Wikipedia's articles related to Game theory. We need your help!

Join in | Fix a red link | Add content | Weigh in


Start This article has been rated as start-Class on the assessment scale.
High This article is on a subject of high-importance within game theory.
To-do list for Common knowledge (logic):
  • Add Aumann structures
  • Add agreeing-to-disagree results
  • Add stuff about coordinated attack


[edit] The blue eyes people on the island example

The "textbook example" is largely an opportunity for showing off: it does not actually illuminate what is meant by common knowledge. The evolution of what is considered "common knowledge" within a society is not approached yet. Why are no vehicles of "common knowledge" mentioned? Is there no relation to proverbs for instance? A few links to the rest of Wikipedia might make this exercise appear less self-indulgent. --Wetman 22:11, 24 Jan 2005 (UTC)

The "textbook example" is not self-indulgence. That example is the one example I had to demonstrate why common knowledge is different from "general knowledge" to n-ply, with arbitrarily large n. I'm not a logician, nor an expert on this matter, and I bring forth what little knowledge I have in the hopes of contributing as best I can.
This article was intended as one on the precise "common knowledge" of modal logic (and possibly its applications to real human systems) not the informally defined "common knowledge" of proverbs, oral traditions, etc. EventHorizon talk 23:03, 24 Jan 2005 (UTC)

Where's the article defining "Common knowledge", that is, the stuff that most people know? I.E. "IT is common knowledge that the U.S. Declaration of Independence was signed in 1776." --Locarno 16:10, 3 March 2006 (UTC)

Perhaps this paper should have been called the logic of common knowledge. Pierre de Lyon 02:42, 21 March 2006 (UTC)
Moved to "Common knowledge (logic)". -- Beland 05:28, 7 May 2006 (UTC)

Is the example even correct for K>3? Isn't it common knowledge from the start that there are at least K-2 people with blue eyes? 124.176.51.232 (talk) 09:31, 3 February 2008 (UTC)

Each new day that no-one leaves adds to the knowledge of the number of blue eyed people. After day 1, everyone knows that there are at least 2 blue-eyed people. After day 2, everyone knows that there are at least 3 blue-eyed people. 216.17.5.44 (talk) 21:04, 12 February 2008 (UTC)

I know nothing of the concept of "common knowledge" that is being explained here, but to me at least, the example is flawed. For n>1, there is no knowledge introduced by the outsider's pronouncement of the existence of blue eyes. That only adds something for the trivial case of n=1 - it is simply a device to assist the induction proof. For n>1, there is the new knowledge introduced by the passing of each day. The blue-eyed people would leave n days *after they got there*. 216.17.5.44 (talk) 21:39, 12 February 2008 (UTC)

I don't think the validity of the example is in dispute. It's a well-known puzzle. But as a response to your statement, an announcement is absolutely required in this problem. When the islanders arrived, for the n=1 case the blue-eyed person would have no evidence as to the existence of blue-eyed people, and would not leave. For the n=2 case, each blue-eyed islander would not expect a single blue-eyed islander to know that blue-eyed islanders existed, and would therefore not deduce his own eye color, etc. This puzzle is tricky to think about correctly, which is why it's interesting. But its trickiness does not make it incorrect. —Preceding unsigned comment added by 58.91.12.178 (talk) 20:21, 16 February 2008 (UTC)
Most of the puzzle's "trickiness" comes from a pointless and baffling redefinition of what it means to be human. For values of n above 3 or perhaps 4, no one will leave the island unless they are extraordinarily good at logic, as evidenced by the fact that laypeople who hear this puzzle never think it's reasonable for anyone to ever leave the island. Replace the people in the puzzle with robots programmed to flawlessly follow all their knowledge to all of its logical conclusions, and you have a good puzzle (and quite correct as outlined in the article). However, as long as we postulate people instead of robots, it's simply wrong. People don't and generally can't act like robots, and it's patently unfair to present a logic puzzle in which the reader has to pretend they do. It makes the puzzle harder, but for the same reasons that describing it in 5th century Japanese would make it harder. Therefore, I say we change the presentation of the puzzle in the article to be about robots, accordingly. If no one disagrees I'll do it in a couple of days. --Ecksemmess (talk) 23:19, 16 February 2008 (UTC)
I believe the puzzle is difficult to understand because it would not seem that the visitor's statement, that there are people on the island with blue eyes, would have any effect when everyone already knows that there are such people for any case n>2. Populations of hyperrational people are very commonly used in problems of this sort, and it doesn't seem that using them here presents any special difficulty. Accepting the existence of hyperrational people would seem to be the easiest part of this puzzle. In any case, the puzzle still has its meaning if you use something other than the everyday hyperrational Joe, like hyperrational aliens, hyperrational robots, or hyperrational professors of logic. So if you feel strongly about the subject of the puzzle, change away. But a more useful task might be a clear explanation of how a statement of something which is already known adds new information to the island. This is not at all easy, but would add quite a bit to the article if someone could find a way to do it.24.57.194.211 (talk) 13:37, 19 February 2008 (UTC)
To be sure, the puzzle is difficult to understand for quite a few reasons. Whether we talk about robots or humans, you're right that the difficulty in seeing what new information the visitor brings is going to throw a lot of people off the mark. I'm working on a good way to elucidate this factor; probably the best explanation involves admitting that the visitor does bring new information, though the new information is specifically that everyone believes that everyone believes that everyone believes (...to the hundredth) that someone has blue eyes. The recursive aspect of this knowledge is the key, and is clearly new with the visitor's proclamation, assuming no one grants the possibility of a lie and assuming the visitor gathers everyone together, of course. However, I still think that for the layperson (rather than the logician or veteran of these puzzles), something should replace the hypothetical "hyper-rational human", which I'm afraid is just too counter-intuitive an entity for even many quite intelligent people to contemplate. (What's worse, the article as is doesn't even mention that the people are hyper-rational, which obviously totally invalidates everything.) I know how annoying it is when someone like me complains and complains instead of going and making improvements, so I'm sorry about that. I'll do what I can.
Oh, and I don't see any trolls here, Pierre de Lyon. --Ecksemmess (talk) 10:12, 22 February 2008 (UTC)

"Please do not feed the troll" Pierre de Lyon (talk) 22:03, 19 February 2008 (UTC)

[edit] First order logic

Beware of the use first order logic which has a precise meaning in logic. As second order logic and higher order logic, see section Comparison with other logics in article first order logic for a classification. Pierre de Lyon (talk) 21:54, 19 February 2008 (UTC)