Compound of six decagrammic prisms

From Wikipedia, the free encyclopedia

Compound of six decagrammic prisms
Type Uniform compound
Index UC41
Polyhedra 6 decagrammic prisms
Faces 12 decagrams, 60 squares
Edges 180
Vertices 120
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent 5-fold antiprismatic (D5d)

This uniform polyhedron compound is a symmetric arrangement of 6 decagrammic prisms, aligned with the axes of five-fold rotational symmetry of a dodecahedron.

[edit] Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

(±√(τ/√5), ±2τ−1, ±√(τ−1/√5))
(±(√(τ/√5)+τ−2), ±1, ±(√(τ−1/√5)−τ−1))
(±(√(τ/√5)−τ−1), ±τ−2, ±(√(τ−1/√5)+1))
(±(√(τ/√5)+τ−1), ±τ−2, ±(√(τ−1/√5)−1))
(±(√(τ/√5)−τ−2), ±1, ±(√(τ−1/√5)+τ−1))

where τ = (1+√5)/2 is the golden ratio (sometimes written φ).

[edit] References

  • John Skilling, Uniform Compounds of Uniform Polyhedra, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 79, pp. 447-457, 1976.
This polyhedron-related article is a stub. You can help Wikipedia by expanding it.
Languages