Compound of eight octahedra with rotational freedom

From Wikipedia, the free encyclopedia

Compound of eight octahedra with rotational freedom
Type Uniform compound
Index UC11
Polyhedra 8 octahedra
Faces 16+48 triangles
Edges 96
Vertices 48
Symmetry group octahedral (Oh)
Subgroup restricting to one constituent 6-fold improper rotation (S6)

This uniform polyhedron compound is a symmetric arrangement of 8 octahedra, considered as triangular antiprisms. It can be constructed by superimposing eight identical octahedra, and then rotating them in pairs about the four axes that pass through the centres of two opposite octahedral faces. Each octahedron is rotated by an equal (and opposite, within a pair) angle θ.

When θ = 0, all eight octahedra coincide. When θ is 60 degrees, the octahedra coincide in pairs yielding (two superimposed copies of) the compound of four octahedra.

[edit] Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the permutations of

(±(1 − cosθ + (√3) sin θ), ±(1 − cosθ − (√3)sinθ), ±(1 + 2 cos θ))

[edit] References

  • John Skilling, Uniform Compounds of Uniform Polyhedra, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 79, pp. 447-457, 1976.
This polyhedron-related article is a stub. You can help Wikipedia by expanding it.
Languages