Colinear map

From Wikipedia, the free encyclopedia

In coalgebra theory, the notion of colinear map is dual to the notion for linear map of vector space, or more generally, for morphism between R-module. Specifically, let R be a ring, M,N,C be R-modules, and

 \rho_M: M\rightarrow M\otimes C, \rho_N: N\rightarrow N\otimes C

be right C-comodules. Then an R-linear map  f:M\rightarrow N is called a (right) comodule morphism, or (right) C-colinear, if

\rho_N\circ f=(f\otimes id)\circ \rho_M

[edit] References

  • Khaled AL-Takhman, Equivalences of Comodule Categories for Coalgebras over Rings, J. Pure Appl. Algebra,.V. 173, Issue: 3, September 7, 2002, pp. 245-271