Classical modular curve

From Wikipedia, the free encyclopedia

In number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation

Φn(x, y)=0,

where for the j-invariant j(τ),

x=j(n τ), y=j(τ)

is a point on the curve. The curve is sometimes called X0(n), though often that is used for the abstract algebraic curve for which there exist various models. A related object is the classical modular polynomial, a polynomial in one variable defined as Φn(x, x).

Contents

[edit] Geometry of the modular curve

Knot at infinity of X0(11)
Knot at infinity of X0(11)

The classical modular curve, which we will call X0(n), is of degree greater than or equal to 2n when n>1, with equality if and only if n is a prime. The polynomial Φn has integer coefficients, and hence is defined over every field. However, the coefficients are sufficiently large that computational work with the curve can be difficult. As a polynomial in x with coefficients in Z[y], it has degree ψ(n), where ψ is the Dedekind psi function. Since Φn(x, y) =   Φn(y, x), X0(n) is symmetrical around the line y=x, and has singular points at the repeated roots of the classical modular polynomial, where it crosses itself in the complex plane. These are not the only singularities, and in particular when n>2, there are two singularites at infinity, where x=0, y=∞ and x=∞, y=0, which have only one branch and hence have a knot invariant which is a true knot, and not just a link.

[edit] Parametrization of the modular curve

When n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, or 25, X0(n) has genus zero, and hence can be parametrized by rational functions. The simplest nontrivial example is X0(2), where if

j_2(q) = q^{-1} - 24 + 276q -2048q^2 + 11202q^3 + \cdots = ((\eta(q)/\eta(q^2))^{24}

is (up to the constant term) the McKay-Thompson series for the class 2B of the Monster, and η is the Dedekind eta function, then

x = \frac{(j_2+256)^3}{j_2^2}, y = \frac{(j_2+16)^3}{j_2}

parametrizes X0(2) in terms of rational functions of j2. It is not necessary to actually compute j2 to use this parametrization; it can be taken as an arbitrary parameter.

[edit] Mappings

A curve C over the rationals Q such that there exists a surjective morphism from X0(n) to C for some n, given by a rational map with integer coefficients

φ:X0(n) → C,

is a modular curve. The famous modularity theorem tells us that all elliptic curves over Q are modular.

Mappings also arise in connection with X0(n) since points on it correspond to n-isogenous pairs of elliptic curves. Two elliptic curves are isogenous if there is a morphism of varieties (defined by a rational map) between the curves which is also a group homomorphism, respecting the group law on the elliptic curves, and hence which sends the point at infinity (serving as the identity of the group law) to the point at infinity. The isogenies with cyclic kernel of degree n, the cyclic isogenies, correspond to points on X0(n).

When X0(n) has genus one, it will itself be isomorphic to an elliptic curve, which will have the same j-invariant. For instance, X0(11) has j-invariant -122023936/161051 = - 21211-5313, and is isomorphic to the curve y2+y = x3-x2-10x-20. If we substitute this value of j for y in X0(5), we obtain two rational roots and a factor of degree four. The two rational roots correspond to isomorphism classes of curves with rational coefficients which are 5-isogenous to the above curve, but not isomorphic, having a different function field.

Specifically, we have the six rational points x=-122023936/161051, y=-4096/11, x=-122023936/161051, y=-52893159101157376/11, and x=-4096/11, y=-52893159101157376/11, plus the three points exchanging x and y, all on X0(5), corresponding to the six isogenies between these three curves. If in the curve y2+y = x3-x2-10x-20 isomorphic to X0(11) we substitute

x \mapsto \frac{x^5-2x^4+3x^3-2x+1}{x^2(x-1)^2}

and

y \mapsto y-\frac{(2y+1)(x^4+x^3-3x^2+3x-1)}{x^3(x-1)^3}

and factor, we get an extraneous factor of a rational function of x, and the curve y^2+y=x^3-x^2, with j-invariant -4096/11. Hence both curves are modular of level 11, having mappings from X0(11).

By a theorem of Henri Carayol, if an elliptic curve E is modular then its conductor, an isogeny invariant described originally in terms of cohomology, is the smallest integer n such that there exists a rational mapping φ:X0(n) → E. Since we now know all elliptic curves over Q are modular, we also know that the conductor is simply the level n of its minimal modular parametrization.

[edit] Galois theory of the modular curve

The Galois theory of the modular curve was investigated by Erich Hecke. Considered as a polynomial in x with coefficients in Z[y], the modular equation Φ0(n) is a polynomial of degree ψ(n) in x, whose roots generate a Galois extension of Q(y). In the case of X0(p) with p prime, where the characteristic of the field is not p, the Galois group of

Q(x, y)/Q(y)

is PGL2(p), the projective general linear group of linear fractional transformations of the projective line of the field of p elements, which has p+1 points, the degree of X0(p).

This extension contains an algebraic extension

F = \mathbf {Q}(\sqrt{(-1)^\frac{p-1}{2}p})

of Q. If we extend the field of constants to be F, we now have an extension with Galois group PSL2(p), the projective special linear group of the field with p elements, which is a finite simple group. By specializing y to a specific field element, we can, outside of a thin set, obtain an infinity of examples of fields with Galois group PSL2(p) over F, and PGL2(p) over Q.

When n is not a prime, the Galois groups can be analyzed in terms of the factors of n as a wreath product.

[edit] See also

[edit] External links

  • [1]Genus of X0(n)
  • [2]Coefficients of X0(n)

[edit] References

  • Erich Hecke, Die eindeutige Bestimmung der Modulfunktionen q-ter Stufe durch algebraische Eigenschaften, Math. Ann. 111 (1935), 293-301, reprinted in Mathematische Werke, third edition, Vandenhoeck & Ruprecht, Göttingen, 1983, 568-576[3]
  • Anthony Knapp, Elliptic Curves, Princeton, 1992
  • Serge Lang, Elliptic Functions, Addison-Wesley, 1973
  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1972