Talk:Characteristic (algebra)

From Wikipedia, the free encyclopedia

WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, which collaborates on articles related to mathematics.
Mathematics rating: Start Class Low Priority  Field: Algebra

Excuse me but this article sounds like gobbledygook to me. How about some simpler explainations for school kids preferably with examples.

There is a link to ring (mathematics). You need to know what a ring is in algebra. Follow that link. Michael Hardy 01:12, 13 Dec 2004 (UTC)
In response to your 'goobblygook' comment, I've changed the article to include a more approachable definition of a ring's characteristic. It would take quite of bit of instruction for school children to understand what a ring characteristic is, but if you are a school child don't let that hold you back! Start with groups first and work your way up to rings. If you aren't a school child forgive me for patronizing you.

[edit] Examples needed for Abstract Algebra!

Can you please provide some example, a case in which there is non zero characteristic?

I feel that it would always be better if examples are cited along with theory in Abstract Algebra.

The article gives several examples of rings and fields with non-zero characteristic. The simplest is Z/nZ, the ring of integers modulo n, which has characteristic n. AxelBoldt 15:42, 23 May 2006 (UTC)

[edit] Trivial Ring

Is the characteristic of the trivial ring defined? If so, it would seem to pose a problem to the statement that a ring has the same characteristic of its subrings. Mickeyg13 00:54, 28 April 2007 (UTC)

The characteristic of the trivial ring should be 1. There is no problem as the trivial ring isn't a subring of anything (except itself). Recall that subrings must contain the multiplicative identity. -- Fropuff 02:47, 28 April 2007 (UTC)
Bah, well in my mind, rings need not have a multiplicative identity, thus the trivial ring is a subring of every ring. I know the Wikipedia convention on this, but I don't have to agree with this, and I was forgetting about this when I posted. I wish the mathematical community could come to some sort of consensus on this. Mickeyg13 05:28, 28 April 2007 (UTC)
Ah, well if you omit the unital axiom then the statement certainly wouldn't be true (even if you disallow the trivial ring). -- Fropuff 06:01, 28 April 2007 (UTC)