Image:CategoryBraiding-03.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

[edit] Summary

Commuative diagram defining a braided monoidal category.

[edit] Licensing

Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

[edit] TeX source

\begin{diagram}[vtrianglewidth=2.1em,tight]
& & (A\otimes B)\otimes C & & \rTo^{\scriptstyle\gamma} & & C\otimes(A\otimes B) \\
& \ruTo^{\scriptstyle\alpha^{-1}} & & & & & & \rdTo>{\scriptstyle\alpha^{-1}} \\
A\otimes (B\otimes C) & & & & & & & & (C\otimes A)\otimes B \\
& \rdTo<{\scriptstyle 1\otimes\gamma} & & & & & & \ruTo>{\scriptstyle\gamma\otimes 1} \\
& & A\otimes (C\otimes B) & & \rTo_{\scriptstyle\alpha^{-1}} & & (A\otimes C)\otimes B \\
\end{diagram}

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current20:55, 27 January 2006363×266 (9 KB)Fropuff (Commuative diagram defining a braided monoidal category.)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):