Category of small categories
From Wikipedia, the free encyclopedia
In mathematics, specifically in category theory, the category of small categories, denoted by Cat, is the category whose objects are all small categories and whose morphisms are functors between categories. Cat may actually be regarded as a 2-category with natural transformations serving as 2-morphisms.
The category Cat is itself a large category, and therefore not an object of itself. In order to avoid problems analogous to Russell's paradox one cannot form the “category of all categories”. But it is possible to form a quasicategory of all categories.