Carnot's theorem

From Wikipedia, the free encyclopedia

\begin{align} & {} \qquad DG + DH + DF  \\ & {} = |DG| + |DH|- |DF| \\ & {} = R + r \end{align}

In Euclidean geometry, Carnot's theorem, named after Lazare Carnot (1753–1823), is as follows. Let ABC be an arbitrary triangle. Then the sum of the signed distances from the circumcenter D to the sides of triangle ABC is

DF + DG + DH = R + r,

where r is the inradius and R is the circumradius. Here the sign of the distances is taken negative if and only if the line segment DX (X = F, G, H) lies completely outside the triangle. In the picture DF is negative and both DG and DH are positive.

Carnot's theorem is used in a proof of the Japanese theorem for concyclic polygons.

[edit] External links