Carlson symmetric form

From Wikipedia, the free encyclopedia

In mathematics, the Carlson symmetric forms of elliptic integrals, RC, RD, RF and RJ are defined by

R_C(x,y) := \frac{1}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1}\,dt
R_D(x,y,z) := \frac{3}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-3/2}\,dt
R_F(x,y,z) := \frac{1}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2}\,dt
R_J(x,y,z,p) := \frac{3}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2} (t+p)^{-1}\,dt

Note that RC is a special case of RF and RD is a special case of RJ;

R_C\left(x,y\right)=R_F\left(x,y,y\right)
R_D\left(x,y,z\right)=R_J\left(x,y,z,z\right).

Contents

[edit] Relations concerning to Legendre form of elliptic integrals

[edit] Incomplete elliptic integrals

Incomplete elliptic integrals can be calculated easily using Carlson symmetric forms:

F(\phi,k)=\sin\phi R_F\left(\cos^2\phi,1-k^2\sin^2\phi,1\right)
E(\phi,k)=\sin\phi R_F\left(\cos^2\phi,1-k^2\sin^2\phi,1\right) -\frac{1}{3}k^2\sin^3\phi R_D\left(\cos^2\phi,1-k^2\sin^2\phi,1\right)
\Pi(\phi,n,k)=\sin\phi R_F\left(\cos^2\phi,1-k^2\sin^2\phi,1\right)+
\frac{1}{3}n\sin^3\phi R_J\left(\cos^2\phi,1-k^2\sin^2\phi,1,1-n\sin^2\phi\right)

[edit] Complete elliptic integrals

Complete elliptic integrals can be calculated by substituting \phi=\frac{\pi}{2}:

K(k)=R_F\left(0,1-k^2,1\right)
E(k)=R_F\left(0,1-k^2,1\right)-\frac{1}{3}k^2 R_D\left(0,1-k^2,1\right)
\Pi(n,k)=R_F\left(0,1-k^2,1\right)+\frac{1}{3}n R_J \left(0,1-k^2,1,1-n\right)

[edit] Other properties

Duplication theorem:

R_F(x,y,z)=2R_F(x+\lambda,y+\lambda,z+\lambda)=
R_F\left(\frac{x+\lambda}{4},\frac{y+\lambda}{4},\frac{z+\lambda}{4}\right),

where \lambda=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}.

Homogeneity:

R_F\left(\lambda x,\lambda y,\lambda z\right)=\lambda^{-1/2}R_F(x,y,z)
R_J\left(\lambda x,\lambda y,\lambda z,\lambda p\right)=\lambda^{-3/2}R_J(x,y,z,p)

[edit] Numerical evaluation

The duplication theorem can be used for a fast and robust evaluation of the Carlson symmetric form of elliptic integrals and therefore also for the evaluation of Legendre-form of elliptic integrals. Let us calculate RF(x,y,z): first, define x0 = x, y0 = y and z0 = z. Then iterate the series

\lambda_n=\sqrt{x_ny_n}+\sqrt{y_nz_n}+\sqrt{z_nx_n},
x_{n+1}=\frac{x_n+\lambda_n}{4}, y_{n+1}=\frac{y_n+\lambda_n}{4}, z_{n+1}=\frac{z_n+\lambda_n}{4}

until the desired precision is reached: if x, y and z are non-negative, all of the series will converge quickly to a given value, say, μ. Therefore,

R_F\left(x,y,z\right)=R_F\left(\mu,\mu,\mu\right)=\mu^{-1/2}.

Evaluating RC(x,y) is much the same due to the relation

R_C\left(x,y\right)=R_F\left(x,y,y\right).

[edit] External links