Cantitruncated 600-cell

From Wikipedia, the free encyclopedia

Cantitruncated 600-cell

Schlegel diagram
Type Uniform polychoron
Cells 1440 total:
120 5.6.6
720 4.4.5
600 4.6.6
Faces 8640:
3600{4}+1440{5}+
3600{6}
Edges 14400
Vertices 7200
Vertex figure -
Schläfli symbol t0,1,2{3,3,5}
Symmetry group H4, [3,3,5]
Properties convex

In geometry, the cantitruncated 600-cell is a uniform polychoron.

[edit] See also

[edit] References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • M. Möller: Definitions and computations to the Platonic and Archimedean polyhedrons, thesis (diploma), University of Hamburg, 2001

[edit] External links

Languages