Cantitruncated 600-cell
From Wikipedia, the free encyclopedia
Cantitruncated 600-cell | |
---|---|
Schlegel diagram |
|
Type | Uniform polychoron |
Cells | 1440 total: 120 5.6.6 720 4.4.5 600 4.6.6 |
Faces | 8640: 3600{4}+1440{5}+ 3600{6} |
Edges | 14400 |
Vertices | 7200 |
Vertex figure | - |
Schläfli symbol | t0,1,2{3,3,5} |
Symmetry group | H4, [3,3,5] |
Properties | convex |
In geometry, the cantitruncated 600-cell is a uniform polychoron.
[edit] See also
[edit] References
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- M. Möller: Definitions and computations to the Platonic and Archimedean polyhedrons, thesis (diploma), University of Hamburg, 2001
[edit] External links
- Truncated-icosahedral prismatohexacosihecatonicosachoron (45) from George Olshevsky's Convex uniform polychora
- Archimedisches Polychor Nr. 61 (cantitruncated 600-cell) Marco Möller's Archimedean polytopes in R4 (German)