Calorimeter (particle physics)
From Wikipedia, the free encyclopedia
In particle physics, a calorimeter is an experimental apparatus that measures the energy of particles. Most particles enter the calorimeter and initiate a particle shower and the particles' energy is deposited in the calorimeter, collected, and measured. The energy may be measured in its entirety, requiring total containment of the particle shower, or it may be sampled. Typically, calorimeters are segmented transversely to provide information about the direction of the particle or particles, as well as the energy deposited, and longitudinal segmentation can provide information about the identity of the particle based on the shape of the shower as it develops. Calorimetry design is an active area of research in particle physics.
[edit] Types of calorimeter
An electromagnetic calorimeter is one specifically designed to measure the energy of particles that interact primarily via the electromagnetic interaction, while a hadronic calorimeter is one designed to measure particles that interact via the strong nuclear force. (See types of particle showers for the differences between the two.) The response of a calorimeter can be described in terms of the e/h ratio. This is the measure of how well a calorimeter responds to leptons or photons verses the hadrons. Ideally one would want a ratio e/h~1, this condition is called compensation.
Either of the above types can be made as a sampling calorimeter, in which the material that produces the particle shower is distinct from the material that measures the deposited energy. Typically the two materials alternate. One advantage of this is that each material can be well-suited to its task; for example, a very dense material can be used to produce a shower that evolves quickly in a limited space, even if the material is unsuitable for measuring the energy deposited by the shower. A disadvantage is that some of the energy is deposited in the wrong material and is not measured; thus the total shower energy must be estimated.
[edit] Calorimeters in High Energy Physics Experiments
Most large particle physics experiments use some form of calorimetry. In large colliding experiments like ATLAS or ZEUS, the calorimeter works in conjunction with other components like a Central Tracker and a Muon Detector. All the components work together to achieve the objective of reconstructing a physics event.
[edit] See also
- Calorimeter (for other uses of the term)