Calorie restriction

From Wikipedia, the free encyclopedia

Calorie restriction, or caloric restriction (CR), aims to improve health and slow the aging process by limiting dietary energy intake. Calorie restriction is a common measure, found in several dietary regimens, including the Okinawa diet [1] and the CRON-diet.

Contents

[edit] Effects on humans

In human subjects, CR has been shown to lower cholesterol, fasting glucose, and blood pressure.[citation needed] Some[who?] consider these to be biomarkers of aging, since there is a correlation between these markers and risk of diseases associated with aging. Except for houseflies (below), animal species tested with CR so far, including primates, rats, mice, spiders, Drosophila, C. elegans and rotifers, have shown lifespan extension[citation needed]. CR is the only known dietary measure capable of extending maximum lifespan[citation needed], as opposed to average lifespan. In CR, energy intake is minimized, but sufficient quantities of vitamins, minerals and other important nutrients must be eaten.

A small-scale study in the US at the Washington University School of Medicine in St. Louis studied the effects following a calorie-restricted diet of 10-25% less calorie intake than the average Western diet.[citation needed] Body mass index (BMI) was significantly lower in the calorie-restricted group when compared with the matched group; 19.6 compared with 25.9. The BMI values for the comparison group are similar to the mean BMI values for middle-aged people in the US.

All those on calorie-restricted diets experienced reductions in BMI after starting their diet. Their BMIs decreased from an average of 24 (range of 29.6 to 19.4) to an average of 19.5 (range of 22.8 to 16.5) over the course of their dieting (3-15 years). Nearly all the decrease in BMI occurred in the first year of dieting[citation needed]. It was found that the average total cholesterol and LDL (bad) cholesterol levels for calorie-restricted individuals were the equivalent of those found in the lowest 10% of normal people in their age group. It was found that the average HDL (good) cholesterol levels for calorie-restricted individuals were very high—in the 85th to 90th percentile range for normal middle-aged US men. These positive changes in calorie-restricted individuals were found to occur mainly in the first year of dieting.

It was found that the calorie-restricted group had remarkably low triglyceride levels. In fact, they were as low as the lowest 5% of Americans in their 20s. This is more remarkable when it is noted that the calorie-restricted individuals were actually aged between 35 and 82 years. Both systolic and diastolic blood pressure levels in calorie-restricted group were remarkably low, about 100/60, values normally found in 10-year-old children. Fasting plasma insulin concentration was 65% lower and fasting plasma glucose concentration was also significantly lower in the calorie-restricted group when compared with the comparison group." The comparison group's statistics aligned approximately with the US national average on the dimensions considered.[2] Fasting plasma insulin levels[3] and fasting plasma glucose levels[4] are used as tests to predict diabetes. "[The researchers also] found that excessive calorie restriction causes malnutrition and can lead to anemia, muscle wasting, weakness, dizziness, lethargy, fatigue, nausea, diarrhea, constipation, gallstones, irritability and depression. The study was published in the March 2007 issue of the Journal of American Medical Association."[5]

[edit] Research history

In 1934, Clive McCay and Mary Crowell of Cornell University observed that laboratory rats fed a severely reduced calorie diet while maintaining vital nutrient levels resulted in life spans of up to twice as long as otherwise expected. These findings were explored in detail by a series of experiments with mice conducted by Roy Walford and his student Richard Weindruch. In 1986, Weindruch reported that restricting the calorie intake of laboratory mice proportionally increased their life span compared to a group of mice with a normal diet. The calorie-restricted mice also maintained youthful appearances and activity levels longer and showed delays in age-related diseases. The results of the many experiments by Walford and Weindruch were summarized in their book The Retardation of Aging and Disease by Dietary Restriction (1988) (ISBN 0-398-05496-7).

The findings have since been accepted and generalized to a range of other animals. Researchers are investigating the possibility of parallel physiological links in humans (see Roth et al below). In the meantime, many people have independently adopted the practice of calorie restriction in some form, hoping to achieve the expected benefits themselves. Among the most notable are the members of the Calorie Restriction Society.

Trials were set up at Washington University in 2002 and involved about thirty participants. Dr. Luigi Fontana, clinical investigator, says CR practitioners seem to be aging more slowly than the rest of us. "Take systolic blood pressure," he says. "Usually, that rises with age reliably, partly because the arteries are hardening. In my group, mean age is 55, and mean systolic blood pressure is 110: that’s at the level of a 20-year-old."

"Of course, I can’t tell you if my subjects will live to 130. So many uncontrollable factors affect length of life. I don’t have enough evidence to prove these people are ageing more slowly, but it looks like it."[6]

A study conducted by the Salk Institute for Biological Studies and published in the journal Nature in May 2007 determined that the gene PHA-4 is responsible for the longevity behind calorie restriction in animals, with similar results expected in humans.[7] The discovery has given hope to the synthesising of future drugs to increase the human lifespan by simulating the effects of calorie restriction. However, MIT biologist Leonard Guarente cautioned that "(treatment) won't be a substitute for a healthy lifestyle. You'll still need to go to the gym".[8]

[edit] Effects of CR on different organisms

[edit] Primates

Researchers at New York's Mount Sinai School of Medicine reported in 2006 that compared to monkeys fed a normal diet, squirrel monkeys on a life-long calorie-restrictive diet were less likely to develop Alzheimer's-like changes in their brains.[9] Since squirrel monkeys are relatively long-lived, definitive conclusions regarding whether or not they are aging slower are not yet available. A study on rhesus macaques was started in 1989 at the University of Wisconsin-Madison. Preliminary results show lower fasting insulin and glucose levels as well as higher insulin sensitivity and LDL profiles associated with lower risk of atherogenesis in dietary restricted animals.[10]

[edit] Mice

Studies in female mice have shown that estrogen receptor-alpha declines in the pre-optic hypothalamus as they age. The female mice that were given a calorically restricted diet during the majority of their lives maintained higher levels of ERα in the pre-optic hypothalamus than their non-calorically restricted counterparts.[11] Studies in female mice have shown that both Supraoptic nucleus (SON) and Paraventricular nucleus (PVN) lose about one-third of IGF-1R immunoreactive cells with normal aging. Old caloricly restricted (CR) mice lost higher numbers of IGF-1R non-immunoreactive cells while maintaining similar counts of IGF-1R immunoreactive cells in comparison to Old-Al mice. Consequently, Old-CR mice show a higher percentage of IGF-1R immunoreactive cells reflecting increased hypothalamic sensitivity to IGF-1 in comparison to normally aging mice.[12][13]

[edit] Rats

Seventy years ago, McCay CM, et al., discovered that reducing the amount of calories fed to rats nearly doubled their lifespan. For the last seventy years, scientists have proposed hypotheses as to why. Some explanations included reduced cellular divisions, lower metabolism rates, and reduced production of free radicals generated by metabolism.

[edit] Yeast and invertebrates

Recently, Harvard professor David A. Sinclair has conducted research that provides a new explanation for the lifespan extension caused by calorie restriction. It involves the activation of a gene called Sirt1. When Sirt1 gene activity is increased by genetic manipulation, caloric restriction does not increase it any further. Knocking out the Sirt1 gene also eliminates any beneficial effect from caloric restriction. Resveratrol has been demonstrated to increase the activity of the Sirt1 gene the same way caloric restriction does. When resveratrol increased the subject's lifespan, caloric restriction failed to increase it any further. Presently, Sirt1 gene activity has not been increased in rats by genetic manipulation.

[edit] Drosophila

Research in 2003 by Mair et al.[14]showed that calorie restriction has instantaneous effects on death rates in fruit flies of any age.

[edit] Caenorhabditis elegans

Recent work in a small worm named Caenorhabditis elegans has shown that restriction of glucose metabolism extends life span by primarily increasing oxidative stress to exert an ultimately increased resistance against oxidative stress, a process called (mito)hormesis.

[edit] Why might CR increase longevity?

There have been many theories as to how CR works, and many of them have fallen out of favor or been disproved. These include reduced basal metabolic rate, developmental delay, the control animals being gluttons, and decreased glucocorticoid production.

[edit] (Mito)hormesis

A small number of researchers in the CR field are now proponents of a new theory known as the "Hormesis hypothesis of CR" also known as the "Mitohormesis hypothesis of CR" due to the likely involvement of mitochondria. In the early 1940s, Southam & Ehrlich, 1943 reported that a bark extract that was known to inhibit fungal growth, actually stimulated growth when given at very low concentrations. They coined the term "hormesis" to describe such beneficial actions resulting from the response of an organism to a low-intensity biological stressor. The word "hormesis" is derived from the Greek word "hormaein" which means "to excite".

The (Mito)hormesis hypothesis of CR proposes that the diet imposes a low-intensity biological stress on the organism, which elicits a defense response that helps protect it against the causes of aging. In other words, CR places the organism in a defensive state so that it can survive adversity, and this results in improved health and longer life. This switch to a defensive state may be controlled by longevity genes (see below).

While the (Mito)hormesis hypothesis of CR was a purely hypothetical concept until late 2007, recent work by Michael Ristow's group in a small worm named Caenorhabditis elegans has shown that restriction of glucose metabolism extends life span by primarily increasing oxidative stress to exert an ultimately increased resistance against oxidative stress.[15] This is probably the first experimental evidence for hormesis being an essential cause for extended life span following CR.

[edit] Insulin signaling

Early work in C.elegans (see Cynthia Kenyon) and more recent research in mice has suggested (see Matthias Bluher, C. Ronald Kahn, Barbara B. Kahn, et al.) that it is not only reduced calorie intake which influences longevity. This was done by studying animals which have their metabolism changed to reduce activity of the hormone insulin or downstream elements in its signal transduction, consequently retaining the leanness of animals in the earlier studies. It was observed that these animals can have a normal dietary intake, but have a similarly increased lifespan. This suggests that lifespan is increased for an organism if it can remain lean and if it can avoid any excess accumulation of adipose tissue: if this can be done while not diminishing dietary intake (as in some minority eating patterns, see e.g. Living foods diet or Joel Fuhrman) then the 'starvation diet' anticipated as an impossible requirement by earlier researchers is no longer a precondition of increased longevity.

The extent to which these findings may apply to human nutrition and longevity is as noted above under investigation. A paper in the Proceedings of the National Academy of Sciences, U.S.A. in 2003 showed that practitioners of a CR diet had significantly better cardiovascular health (PMID 15096581). Also in progress are the development of CR mimetic interventions.

[edit] Sir2/SIRT1

Sir2 or "silent information regulator 2" is a longevity gene, discovered in baker's yeast cells, that extends lifespan by suppressing DNA instability (see Sinclair and Guarente, Cell, 1997).[16] In mammals Sir2 is known as SIRT1. Recent discoveries have suggested that the gene Sir2 might underlie the effect of CR. In baker's yeast the Sir2 enzyme is activated by CR, which leads to a 30% lifespan extension. David Sinclair at Harvard Medical School, Boston, showed that in mammals the SIRT1 gene is turned on by a CR diet, and this protects cells from dying under stress.[17] An article in the June 2004 issue of the journal Nature showed that SIRT1 releases fat from storage cells.[18]. Sinclair's lab reported that they have found small molecules (e.g. resveratrol) that activate Sir2/SIRT1 and extend the lifespan of yeast,[19] nematode worms, fruit flies,[20] and mice consuming a high caloric diet.[21] An Italian group headed by Antonio Cellerino showed that resveratrol extends the lifespan of a vertebrate fish by 59%.[22] In the yeast, worm, and fly studies, resveratrol did not extend lifespan if the Sir2 gene was mutated. A group of researchers headed by Matthew Kaeberlein and Brian Kennedy (who just like Sinclair, were trained in the lab of L. Guarente) at the University of Washington Seattle believe that Sinclair's work on resveratrol is an artifact and that the Sir2 gene has no relevance to CR.[23]

Gurarente has recently published that behavior associated with caloric restriction did not occur when Sirt1 knockout mice were put on a calorie restricted diet, the implication being that Sirt1 is necessary for mediating the effects of caloric restriction. However, the same paper also reported that the biochemical parameters thought to mediate the lifespan extending effects of calorie restriction (reduced insulin, igf1 and fasting glucose), were no different in normal mice and mice lacking Sirt1. Whether the lifespan-extending effect of CR was still evident in Sirt1 knockout mice was not reported in that study.

[edit] DHEA

While calorie restriction has been shown to increase DHEA in primates (PMID 12543259), it has not been shown to increase DHEA in post-pubescent primates (PMID 15247063).

[edit] Free radicals and glycation

Two very prominent theories of aging are the free radical theory and the glycation theory, both of which can explain how CR could work. With high amounts of energy available, mitochondria do not operate very efficiently and generate more superoxide. With CR, energy is conserved and there is less free radical generation. A CR organism will be less fat and require less energy to support the weight, which also means that there does not need to be as much glucose in the bloodstream. Less blood glucose means less glycation of adjacent proteins and less fat to oxidize in the bloodstream to cause sticky blocks resulting in atherosclerosis. Type II Diabetics are people with insulin insensitivity caused by long-term exposure to high blood glucose. Obesity leads to type 2 diabetes. Type 2 diabetes and uncontrolled type 1 diabetes are much like "accelerated aging", due to the above effects. There may even be a continuum between CR and the metabolic syndrome.

In examining Calorie Restriction with Optimal Nutrition, it is observed that with less food, and equal nutritional value, there is a higher ratio of nutrients to calories. This may lead to more ideal essential and beneficial nutrient levels in the body. Many nutrients can exist in excess to their need, without side effects as long as they are in balance and not beyond the body's ability to store and circulate them. Many nutrients serve protective effects as antioxidants, and will be at higher levels in the body as there will be lower levels of free radicals due to the lower food intake.

Calorie Restriction with Optimal Nutrition has not been tested in comparison to Calorie Excess with Optimal Nutrition. It may be that with extra calories, nutrition must be similarly increased to ratios comparable to that of Calorie Restriction to provide similar antiaging benefits.

Stated levels of calorie needs may be biased towards sedentary individuals. Calorie restriction may be more of adapting the diet to the body's needs.

Although aging can be conceptualized as the accumulation of damage, the more recent determination that free radicals participate in intracellular signaling has made the categorical equation of their effects with "damage" more problematic than was commonly appreciated in years past.

[edit] Papers on CR in yeast: dismissing increased respiration

In late 2005 Matt Kaeberlein and Brian Kennedy published two important papers on calorie restriction in yeast. In the first, they show that calorie restriction does not increase respiration in yeast (in contrast with the model proposed by Lenny Guarente). In the second, calorie restriction decreased the activity of TOR, a nutrient-responsive signaling protein already known to regulate aging in worms and flies. This paper is the first to directly link TOR to calorie restriction.

[edit] Papers on CR in C. elegans: promoting increased respiration

In late 2007 Michael Ristow published a paper on calorie restriction in C.elegans.[24] Here the authors show that calorie restriction does increase respiration in C.elegans as previously described for yeast (in support of the model proposed by Lenny Guarente, although independent of Sir2.1).

[edit] Evolution

It has been recently argued that during years of famine, it may be evolutionarily desirable for an organism to avoid reproduction but to uprate protective and repair enzyme mechanisms to try to ensure that it is fit for reproduction the following years. This seems to be supported by recent work studying hormones.[25]

[edit] Objections

[edit] No benefit to houseflies

One of the most significant oppositions to caloric restriction comes from Michael Cooper, who has shown that caloric restriction has no benefit in the housefly.[26] Michael Cooper claims that the widely purported effects of calorie restriction may be because a diet containing more calories can increase bacterial proliferation, or that the type of high calorie diets used in past experiments have a stickiness, general composition, or texture that reduces longevity.

[edit] Catabolic damage

A major conflict with calorie restriction is that a calorie excess is needed to prevent catabolizing the body's tissues. A body in a catabolic state promotes the degeneration of muscle tissue, including the heart. This, however, is more likely to occur from a ketonic than catabolic state.

[edit] Physical activity testing biases

While some tests of calorie restriction have shown increased muscle tissue in the calorie-restricted test subjects,[citation needed] how this has occurred is unknown.[citation needed] Muscle tissue grows when stimulated, so it is possible that the calorie-restricted test animals exercised more than their companions on higher calories. The reasons behind this may be that animals enter a foraging state during calorie restriction. In order to control this variable, such tests would need to be monitored to make sure that levels of physical activity are equal between groups.

[edit] Insufficient calories and amino acids for exercise

Exercise has also been shown to increase health and lifespan and lower the incidence of several diseases. Calorie restriction comes into conflict with the high calorie needs of athletes, and may not provide them adequate levels of energy or sufficient amino acids for repair, although this is not a criticism of CR per se, since it is certainly possible to be an unhealthy athlete, or an athlete destined to die at a young age due to poor diet, stresses, etc.

[edit] Benefits only the young

There is evidence to suggest that the benefit of CR in rats might only be reaped in early years. A study on rats which were gradually introduced to a CR lifestyle at 18 months showed no improvement over the average lifespan of the Ad libitum group.[27] This view, however, is disputed by Spindler, Dhahbi, and colleagues who showed that in late adulthood, acute CR partially or completely reversed age-related alterations of liver, brain and heart proteins and that mice placed on CR at 19 months of age show increases in lifespan.[28]

[edit] Possible contraindications

Both animal and human research suggest BUD CR may be contraindicated for people with amyotrophic lateral sclerosis (ALS). Research on a transgenic mouse model of ALS demonstrates that CR may hasten the onset of death in ALS. Hamadeh et al therefore concluded: "These results suggest that CR diet is not a protective strategy for patients with amyotrophic lateral sclerosis (ALS) and hence is contraindicated."[29] Hamadeh et al also note two human studies[30][31] that they indicate show "low energy intake correlates with death in people with ALS." However, in the first study, Slowie, Paige, and Antel state: "The reduction in energy intake by ALS patients did not correlate with the proximity of death but rather was a consistent aspect of the illness." They go on to conclude: "We conclude that ALS patients have a chronically deficient intake of energy and recommended augmentation of energy intake." (PMID 8604660)

Previously, Pedersen and Mattson also found that in the ALS mouse model, CR "accelerates the clinical course" of the disease and had no benefits.[32] Suggesting that a calorically dense diet may slow ALS, a ketogenic diet in the ALS mouse model has been shown to slow the progress of disease.[33] More recently, Mattson et al opine that the death by ALS of Roy Walford, a pioneer in CR research and its antiaging effects, may have been a result of his own practice of CR.[34] However, as Mattson et al acknowledge, Walford's single case is an anecdote that by itself is insufficient to establish the proposed cause-effect relation.

[edit] Negligible effect on larger organisms

Another objection to CR as an advisable lifestyle for humans is the claim that the physiological mechanisms that determine longevity are very complex, and that the effect would be small to negligible in our species.[35]

[edit] Intermittent fasting as an alternative approach

Studies by Mark P. Mattson, Ph. D., chief of the National Institute on Aging's (NIA) Laboratory of Neurosciences, and colleagues have found that intermittent fasting and calorie restriction affect the progression of diseases similar to Huntington's disease, Parkinson's disease, and Alzheimer's disease in mice (PMID 11119686). In one study, rats and mice ate a low-calorie diet or were deprived of food for 24 hours every other day (PMID 12724520). Both methods improved glucose metabolism, increased insulin sensitivity, and increased stress resistance. Researchers have long been aware that calorie restriction extends lifespan, but this study showed that improved glucose metabolism also protects neurons in experimental models of Parkinson's and stroke.

Another NIA study found that intermittent fasting and calorie restriction delays the onset of Huntington's disease-like symptoms in mice and prolongs their lives (PMID 12589027). Huntington's disease (HD), a genetic disorder, results from neuronal degeneration in the striatum. This neurodegeneration results in difficulties with movements that include walking, speaking, eating, and swallowing. People with Huntington's also exhibit an abnormal, diabetes-like metabolism that causes them to lose weight progressively.

This NIA study compared adult HD mice who ate as much as they wanted to HD mice who were kept on an intermittent fasting diet during adulthood. HD mice possess the abnormal human gene huntingtin and exhibit clinical signs of the disease, including abnormal metabolism and neurodegeneration in the striatum. The mice on the fasting program developed clinical signs of the disease about 12 days later and lived 10 to 15% longer than the free-fed mice. The brains of the fasting mice also showed less degeneration. Those on the fasting program also regulated their glucose levels better and did not lose weight as quickly as the other mice. Researchers found that fasting mice had higher brain-derived neurotrophic factor (BDNF) levels. BDNF protects neurons and stimulates their growth. Fasting mice also had high levels of heat-shock protein-70 (Hsp70), which increases cellular resistance to stress.

Another NIA study compared intermittent fasting with cutting calorie intake. Researchers let a control group of mice eat freely (ad libitum). Another group was fed 60% of the calories that the control group consumed. A third group was fasted for 24 hours, then permitted to free-feed. The fasting mice didn't cut total calories at the beginning and the end of the observation period, and only slightly cut calories in between. A fourth group was fed the average daily intake of the fasting mice every day. Both the fasting mice and those on a restricted diet had significantly lower blood sugar and insulin levels than the free-fed controls. Kainic acid, a toxin that damages neurons, was injected into the dorsal hippocampus of all mice. Hippocampal damage is associated with Alzheimer's. Interestingly, the scientists found less damage in the brains of the fasting mice than in those that ate a restricted diet, and most damage in mice with an unrestricted diet. But the control group which ate the average daily intake of the fasting mice also showed less damage than the mice with restricted diet.[36]

Another Mattson study[37] in which overweight adult asthmatics followed alternate day calorie restriction (ADCR) for eight weeks showed marked improvement in oxidative stress, inflammation, and severity of the disease. Evidence from the medical literature suggests that ADCR in the absence of weight loss prolongs lifespan in humans[38].

[edit] See also

[edit] Notes

  1. ^ The Anti-Aging Plan: Strategies and Recipes for Extending Your Healthy Years by Roy Walford (page 26)
  2. ^ Strict diet lowers heart risk
  3. ^ A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia
  4. ^ Fasting Plasma Glucose Test
  5. ^ Some Try Calorie Restriction For Long Life
  6. ^ "Eat less — and live to 130", American Academy of Anti-Aging Medicine, 2005-10-07. Retrieved on 2007-06-12. 
  7. ^ "The gene for longevity, if you're a worm", ABC News, 2007. Retrieved on 2007-05-03. 
  8. ^ "Longevity gene linked to low-calorie diets", USA Today, 2007. Retrieved on 2007-05-03. 
  9. ^ Qin W, Chachich M, Lane M, Roth G, Bryant M, de Cabo R, Ottinger MA, Mattison J, Ingram D, Gandy S, Pasinetti GM. Calorie restriction attenuates Alzheimer's disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J Alzheimers Dis. 2006 Dec;10(4):417-22. PubMed
  10. ^ Ramsey JJ, Colman RJ, Binkley NC, Christensen JD, Gresl TA, Kemnitz JW, Weindruch R. Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study. Exp Gerontol. 2000 Dec;35(9-10):1131-49.
  11. ^ Yaghmaie F, Saeed O, Garan SA, Freitag W, Timiras PS, Sternberg H., 2005. "Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice". Neuro Endocrinol Lett. 2005 Jun; Vol. 26(3):197-203. PMID 15990721
  12. ^ Saeed O, Yaghmaie F, Garan SA, Gouw AM, Voelker MA, Sternberg H, Timiras PS. (2007). "Insulin-like growth factor-1 receptor immunoreactive cells are selectively maintained in the paraventricular hypothalamus of calorically restricted mice". Int J Dev Neurosci 25 (1): 23-8. doi:10.1016/j.ijdevneu.2006.11.004. PMID 17194562. 
  13. ^ Yaghmaie F, Saeed O, Garan SA, Voelker MA, Gouw AM, Freitag W, Sternberg H, Timiras PS (2006). "Age-dependent loss of insulin-like growth factor-1 receptor immunoreactive cells in the supraoptic hypothalamus is reduced in calorically restricted mice". Int J Dev Neurosci 24 (7): 431-6. doi:10.1016/j.ijdevneu.2006.08.008. PMID 17034982. 
  14. ^ Demography of dietary restriction and death in Drosophila
  15. ^ Publication demonstrating that oxidative stress is promoting life span
  16. ^ Sinclair DA, Guarente L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell. 1997 Dec 26;91(7):1033-42. PMID: 9428525[1]
  17. ^ Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004 Jul 16;305(5682):390-2. Epub 2004 Jun 17. PMID: 15205477[2]
  18. ^ Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004 Jun 17;429(6993):771-6. PMID 15175761. Letter in Nature
  19. ^ Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003 Sep 11;425(6954):191-6. Epub 2003 Aug 24. PMID: 12939617[3]
  20. ^ Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004 Aug 5;430(7000):686-9. Epub 2004 Jul 14. Erratum in: Nature. 2004 Sep 2;431(7004):107. PMID: 15254550[4]
  21. ^ Baur JA, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006 Nov 16;444(7117):337-42. Epub 2006 Nov 1. PMID: 17086191[5]
  22. ^ Curr Biol. 2006 16:296[6]
  23. ^ Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2004 Sep;2(9):E296. Epub 2004 Aug 24. PMID: 15328540[7]
  24. ^ Publication demonstrating that oxidative stress is promoting life span
  25. ^ [Charlie Rose- Calorie restriction]
  26. ^ Effect of caloric restriction on life span of the ...[FASEB J. 2004] - PubMed Result
  27. ^ Lipman RD, Smith DE, Bronson RT, Blumberg J. Is late-life caloric restriction beneficial? Aging (Milano). 1995 Apr;7(2):136-9. PMID 7548264
  28. ^ Spindler SR. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech Ageing Dev. 2005 Sep;126(9):960-6. Review. PMID: 15927235
  29. ^ Hamadeh MJ, Rodriguez MC, Kaczor JJ, Tarnopolsky MA. Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse. Muscle Nerve. 2005 Feb;31(2):214-20. PMID 15625688.
  30. ^ Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ. Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr. 1996 Jan;63(1):130-7. PMID 8604660.
  31. ^ Slowie LA, Paige MS, Antel JP. Nutritional considerations in the management of patients with amyotrophic lateral sclerosis (ALS). J Am Diet Assoc. 1983 Jul;83(1):44-7. PMID 6863783
  32. ^ Pedersen WA, Mattson MP. No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase mutant mice. Brain Res. 1999 Jun 26;833(1):117-20. PMID 10375685.
  33. ^ Zhao Z, Lange DJ , Voustianiouk A, et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neuroscience 2006, 7:29. (PMID 16584562). Media report on Zhao et al.
  34. ^ Mattson MP, Cutler RG, Camandola S. Energy intake and amyotrophic lateral sclerosis. Neuromolecular Med. 2007;9(1):17-20. PMID 17114821.
  35. ^ Phelan JP, Rose MR. Why dietary restriction substantially increases longevity in animal models but won't in humans. Ageing Res Rev. 2005 Aug;4(3):339-50. PMID 16046282
  36. ^ R. Michael Anson, Zhihong Guo, Rafael de Cabo, Titilola Iyun, Michelle Rios, Adrienne Hagepanos, Donald K. Ingram, Mark A. LaneDagger, Mark P. Mattson. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. PNAS | May 13, 2003 | vol. 100 | no. 10 | 6216-6220
  37. ^ Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, Pearson M, Nassar M, Tellejohan R, Maudsley S, Carlson O, John S, Laub DR, Mattson MP. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med. 2007 Mar 1;42(5):665-74. Epub 2006 Dec 14. PMID 17291990.
  38. ^ Johnson JB, Laub DR, John S. The effect on health of alternate day calorie restriction: eating less and more than needed on alternate days prolongs life. Med Hypotheses. 2006;67(2):209-11. Epub 2006 Mar 10. PMID 16529878.

[edit] References

  • The Retardation of Aging and Disease by Dietary Restriction Richard Weindruch, Roy L. Walford (1988). ISBN 0-398-05496-7
  • The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. Journal of Nutrition, 116(4), pages 641-54.Weindruch R, et al.,April, 1986. PMID 3958810.
  • Caloric Restriction and Aging Richard Weindruch in Scientific American, Vol. 274, No. 1, pages 46--52; January 1996.
  • 2-Deoxy-D-Glucose Feeding in Rats Mimics Physiological Effects of Caloric Restriction. Mark A. Lane, George S. Roth and Donald K. Ingram in Journal of Anti-Aging Medicine, Vol. 1, No. 4, pages 327--337; Winter 1998.
  • Biomarkers of caloric restriction may predict longevity in humans. Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ.: 297: 811, Science 2002. PMID 12161648.
  • Extended longevity in mice lacking the insulin receptor in adipose tissue. Bluher, Khan BP, Kahn CR, Science 299(5606): 572-4, 24 January 2003. PMID 12543978.
  • Sir2-independent life span extension by calorie restriction in yeast, Kaeberlein, M., K.T. Kirkland, S. Fields, and B.K. Kennedy. 2004. PLoS Biol 2: E296. PMID 15328540.
  • Substrate-specific Activation of Sirtuins by Resveratrol, Kaeberlein, M., T. McDonagh, B. Heltweg, J. Hixon, E.A. Westman, S.D. Caldwell, A. Napper, R. Curtis, P.S. Distefano, S. Fields, A. Bedalov, and B.K. Kennedy. 2005. J Biol Chem 280: 17038-45. PMID 15684413.
  • Interview, Longevity and Genetics, Matt Kaeberlein, Brian Kennedy. SAGE Crossroads
  • Increased Life Span due to Calorie Restriction in Respiratory-Deficient Yeast, Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK. PLoS Genet. 25 November 2005;1(5):e69
  • Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients, Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK. Science. 18 November 2005;310(5751):1193-6.
  • PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans, Siler H. Panowski, Suzanne Wolff, Hugo Aguilaniu, Jenni Durieux & Andrew Dillin. 2 May 2007. Nature advance online publication | doi=10.1038/nature05837