Burgess shale type preservation
From Wikipedia, the free encyclopedia
This article or section is in the middle of an expansion or major revamping. You are welcome to assist in its construction by editing it as well. Please view the edit history should you wish to contact the person who placed this template. If this article has not been edited in several days, please remove this template. Consider not tagging with a deletion tag unless the page hasn't been edited in several days. |
The Burgess shale of British Columbia is famous for its exceptional preservation of mid-Cambrian organisms. Many other sites have been discovered of a similar age, with soft tissues preserved in a similar, though not identical, fashion.
These various shales are of great importance in the reconstruction of the ecosystems immediately after the Cambrian explosion. The taphonomic regime results in soft tissue being preserved, which means that organisms without hard parts that could be conventionally fossilised can be seen; also, we gain an insight into the organs of more familiar organisms such as the trilobites.
The most famous localities preserving organisms in this fashion are the Canadian Burgess shale, the Chinese Chengjiang fauna, and the more remote Sirius Passet in north Greenland. However, a number of other localities also exist.
Contents |
[edit] Preservational regime
Please help expand this section
[edit] Fossil localities
[edit] Sirius Passet fauna
Sirius Passet is a lagerstätte in Greenland which was formed about 527 million years ago. Its most common fossils are arthropods, but there is only a handful of trilobite species. There are also very few species with hard (mineralized) parts: trilobites, hyoliths, sponges, brachiopods, and no echinoderms or molluscs.[1]
Halkieria has features associated with more than one living phylum, and is discussed below.
The strangest-looking animals from Sirius Passet are Pambdelurion and Kerygmachela. They are generally regarded as anomalocarids because they have long, soft, segmented bodies with a pair of broad fin-like flaps on most segments and a pair of segmented appendages at the rear. The outer parts of the top surfaces of the flaps have grooved areas which are thought to have acted as gills. Under each flap there is a short, fleshy leg. This arrangement suggests the animals are related to biramous arthropods.[2]
[edit] Chengjiang fauna
There are several Cambrian fossil sites in the Chengjiang county of China’s Yunnan province. The most significant is the Maotianshan shale, a lagerstätte which preserves soft tissues very well. The Chengjiang fauna date to between 525 million and 520 million years ago, about the middle of the early Cambrian epoch, a few million years after Sirius Passet and at least 10 million years earlier than the Burgess Shale.
The Chengjiang sediments provide what are currently the oldest known chordates, the phylum to which all vertebrates belong. The 8 chordate species include Myllokunmingia, possibly a very primitive agnathid (jawless fish) and Haikouichthys, which may be related to lampreys.[3] Yunnanozoon may be the oldest known hemichordate (a phylum closely related to chordates).[4]
Anomalocaris was a mainly soft-bodied swimming predator which was gigantic for its time (up to 70 cm = 2¼ feet long; some later species were 3 times as long); the soft, segmented body had a pair of broad fin-like flaps along each side, except that the last 3 segments had a pair of “fans” arranged in a “V” shape. Unlike Kerygmachela and Pambdelurion (see above), Anomalocaris apparently had no legs, and the grooved patches which are thought to have acted as gills were at the bases of the flaps, or even overlapping on to its back. The two eyes were on relatively long horizontal stalks; the mouth lay under the head and was a round-cornered square of plates which could not close completely; and in front of the mouth were two jointed appendages which were shaped like a shrimp’s body, curved backwards and with short spines on the inside of the curve. Amplectobelua, also found at Chengjiang, was similar, smaller than Anomalocaris but considerably larger than most other Chengjiang animals. Both are thought to have been powerful predators.
Hallucigenia looks like a long-legged caterpillar with spines on its back, and almost certainly crawled on the seabed.[1]
Nearly half of the Chengjiang fossil species are arthropods, few of which had the hard, mineral-reinforced exoskeletons found in most later marine arthropods; only about 3% of the organisms known from Chengjiang have hard shells, and most of those are trilobites (although Misszhouia is a soft-bodied trilobite). Many other phyla are found there: Porifera (sponges) and Priapulida (burrowing “worms” which were ambush predators), Brachiopoda (these had bivalve-like shells, but fed by means of a lophophore, a fan-like filter which occupied about of half of the internal space), Chaetognatha (arrow worms), Cnidaria (jellyfish, sea anemones), Ctenophora (comb jellies), Echinodermata (starfish, sea urchins, etc.), Hyolitha (enigmatic animals with small conical shells), Nematomorpha (horse hair worms, parasites which are typically about 1 m long and 1 mm to 3 mm in diameter), Phoronida (horseshoe worms which live in chitinous tubes and feed by means of a lophophore), and Protista (single-celled animals).[5]
[edit] Burgess Shale
The Burgess Shale was the first of the Cambrian lagerstätten to be discovered (by Walcott in 1909), and the re-analysis of the Burgess Shale by Whittington and others in the 1970s was the basis of Gould’s book Wonderful Life, which was largely responsible for non-scientists' awareness of the Cambrian explosion. The fossils date from the mid Cambrian, about 515 million years ago and 10 million years later than the Chengjiang fauna.
The most common Burgess Shale fossils are arthropods, but many of them are unusual and difficult to classify, for example:
- Marrella is the most common fossil (see picture above), but Whittington’s re-analysis showed that it belonged to none of the known marine arthropod groups (trilobites, crustaceans, chelicerates; well-known modern chelicerates include spiders and scorpions).[6]
- Yohoia was a tiny animal (7 mm to 23 mm long) with: a head shield; a slim, segmented body covered on top by armor plates; a paddle-like tail; 3 pairs of legs under the head shield; a single flap-like appendage fringed with setae (bristles) under each body segment, probably used for swimming and/or respiration; a pair of relatively large appendages at the front of the head shield, each with a pronounced “elbow” and ending in four long spines which may have functioned as “fingers”. Yohoia is assumed to been a mainly benthic (bottom-dwelling) creature that swam just above the ocean floor and used its appendages to scavenge or capture prey. It may be a member of the arachnomorphs, a group of arthropods that includes the chelicerates and trilobites.[7]
- Naraoia was a soft-bodied animal (no mineralized parts) which is classified as a trilobite because its appendages (legs, mouth-parts) are very similar.
- Waptia, Canadaspis and Plenocaris had bivalve-like carapaces. It is uncertain whether these animals are related or acquired bivalve-like carapaces by convergent evolution.[8]
Pikaia resembled the modern lancelet, and was the earliest known chordate until the discovery of the fish-like Myllokunmingia and Haikouichthys among the Chengjiang fauna.
But the “weird wonders”, creatures that resembled nothing known in the 1970s, attracted the most publicity, for example:
- Whittington’s first presentation about Opabinia made the audience laugh.[9] The reconstruction showed a soft-bodied animal with: a slim, segmented body; a pair of flap-like appendages on each segment with gills above the flaps, except that the last 3 segments had no gills and the flaps formed a tail; five stalked eyes; a backward-facing mouth under the head; a long, flexible, hose-like proboscis which extended from under the front of the head and ended in a “claw” fringed with spines. Subsequent research has concluded that Opabinia is a lobopod, closely related to the arthropods and possibly even closer to ancestors of the arthropods.[10]
- Anomalocaris and Hallucigenia were first found in the Burgess Shale, but older specimens have been found in the Chengjiang fauna. They are now regarded as lobopods, and Anomalocaris is very similar to Opabinia in most respects (except the eyes and feeding mechanisms) – see above.
- Odontogriphus is currently regarded as either a mollusc or a lophotrochozoan, i.e. fairly closely related to the ancestors of molluscs (see above).
[edit] Other localities
Please help by creating this section
[edit] References
- ^ a b Conway Morris, S. (1998). The Crucible of Creation. Oxford University Press.
- ^ Budd, G.E. (1997), “Stem Group Arthropods from the Lower Cambrian Sirius Passet Fauna of North Greenland”, in Fortey, R.A. & Thomas, R.H., Arthropod Relationships – Special Volume Series 55, Systematics Association
- ^ Shu, D-G, Luo, H-L, Conway Morris, S., Zhang X-L, Hu, S-X, Chen, L., Han, J., Zhu, M., Li, Y, Chen, L-Z (1999). "Lower Cambrian Vertebrates from South China". Nature 402: 42–46. doi: .
- ^ Shu, D., Zhang, X. and Chen, L. (1996). "Reinterpretation of Yunnanozoon as the earliest known hemichordate". Nature 380: 428–430. doi: .
- ^ Hou, X-G., Aldridge, R.J., Bengstrom, J, Siveter, D.J., Feng, X-H (2004). The Cambrian Fossils of Chengjiang, China. Blackwell Science Ltd, 233.
- ^ Whittington, H.B. (1971). "Redescription of Marrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia". Geological Survey of Canada Bulletin 209: 1–24.
- ^ Briggs, D., Erwin, D. and Collier, F. (1994). The Fossils of the Burgess Shale. Smithsonian Books.
- ^ Taylor, R.S. (1999). "'Waptiid' Arthropods and the Significance of Bivalved Carapaces in the Lower Cambrian". Palaeontological Association 44th Annual Meeting.
- ^ Palaeontology’s hidden agenda
- ^ Budd, G.E. (1996). "The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group". Lethaia 29: 1–14. doi: .