User:Bulleid Pacific/Sandbox 1
From Wikipedia, the free encyclopedia
Rail transport is the transport of passengers and goods by means of wheeled vehicles specially designed to run along railways or railroads. Rail transport is part of the logistics chain, which facilitates the international trading and economic growth in most countries.
A typical railway/railroad track consists of two parallel rails, normally made of steel, secured to cross-beams, termed sleepers (British) or 'ties' (U.S.). The sleepers maintain a constant distance between the two rails; a measurement known as the 'gauge' of the track. To maintain the alignment of the track, it is either laid on a bed of ballast or else secured to a solid concrete foundation.
The vehicles travelling on the rails are arranged in a series of individual powered or unpowered vehicles linked together, called a train; this can include the locomotive where present. A locomotive (or 'engine') is a powered vehicle used to haul a train of unpowered vehicles; calling a locomotive a "train" is a common popular misnomer. A string of unpowered vehicles without the locomotive is also termed a train; in the U.S.A. individual unpowered vehicles are known as cars (a generic term), and are divided according to the role: for a passenger-carrying vehicle the term carriage (or coach) is used, whilst a freight-carrying vehicle is known as a freight car; in Britain, a freight car would be called a wagon (or a truck). An individual powered passenger vehicle is known as a railcar or a power car; when one or more as these are coupled to one or more unpowered trailer cars as an inseparable unit, this is called a railcar set; several sets coupled together make up a multiple unit. Collectively, rail vehicles of all types are known as rolling stock.
Railway rolling stock, which is fitted with metal wheels, moves with low frictional resistance when compared to road vehicles; on the other hand locomotives and power cars normally rely solely for traction on the point of contact of the wheel with the rail whence they obtain adhesion i.e. the part of the transmitted axle load that makes the wheel "adhere" to the smooth rail. Whilst this is usually sufficient under normal dry rail conditions, adhesion can be reduced or even lost through the presence of unwanted material on the rail surface, such as grease, ice or dead leaves.
Contents |
[edit] General
Rail transport is an energy-efficient and capital-intensive means of mechanized land transport and is a component of logistics. Rails provide very smooth and hard surfaces on which the wheels of the train may roll with a minimum of friction. As an example, a typical modern wagon can hold up to 125 tons of freight on two four-wheel bogies/trucks (100 tons in UK). The contact area between each wheel and the rail is tiny, a strip no more than a few millimetres wide, and hence suffers very little friction. This can save energy compared with other forms of transportation, such as road transport which depends on the friction between rubber and road. Trains also have a small frontal area in relation to the load they are carrying, which cuts down on air resistance and thus energy usage. In all, under the right circumstances, a train needs 50-70% less energy to transport a given tonnage of freight (or given number of passengers), than does road transport. Furthermore, the track distributes the weight of the train evenly, allowing significantly greater loads per axle / wheel than in road transport, leading to less wear and tear on the permanent way.
Rail transport makes highly efficient use of space: a double-track rail line can transport greater number of passengers or freight volume in a given amount of time than a four-lane road.[citation needed]
As a result, rail transport is a major form of public transport in many countries. In Asia, for example, many millions use trains as regular transport in India, China, South Korea and Japan. It is also widespread in European countries. By comparison, intercity rail transport in the United States is relatively scarce outside the Northeast Corridor, although a number of major U.S. cities have heavily-used, local rail-based passenger transport systems or light rail or commuter rail operations.[1]
[edit] History
- Timeline of railway history See also
The earliest evidence of a railway found thus far was the 6 kilometers (4 mi) Diolkos wagonway, which transported boats across the Corinth isthmus in Greece during the 6th century BC. Trucks pushed by slaves ran in grooves in limestone, which provided the track element, preventing the wagons from leaving the intended route. The Diolkos ran for over 1300 years, until 900 AD. The first horse-drawn wagonways also appeared in ancient Greece, with others to be found on Malta and various parts of the Roman Empire, using cut-stone tracks.
Railways began re-appearing in Europe after a hiatus following the collapse of the Roman Empire from around 1550, usually operating with wooden track. The first railways in Great Britain (also known as wagonways) were constructed in the early 17th century, mainly for transporting coal from mines to canal wharfs where it could be transferred to a boat for onward shipment. Early examples of this can be found in Broseley in Shropshire, where wooden rails and flanged wheels were utilised, as on a modern railway. However, the rails were liable to wear out under the pressure, and had to be replaced. In 1768, the Coalbrookdale Iron Works laid cast iron plates on top of the wooden rails, providing a more durable load-bearing surface. From the late 18th century, iron rails began to appear, with the British civil engineer William Jessop designing smooth iron edge rails, which were to be used in conjunction with flanged iron wheels. Jessop used this innovation on a route between Loughborough and Nanpantan, Leicestershire in 1789. In 1802, Jessop opened the Surrey Iron Railway in south London, arguably the world's first horse-drawn public railway.
The first locomotive to haul a train of wagons on rails was designed by Cornish engineer Richard Trevithick, and was trialled in 1804 on a plateway at Merthyr Tydfil, South Wales. Although the locomotive successfully hauled the train, the rail design was not a success, partly because its weight broke a number of the brittle cast-iron plates. Despite this setback, another area of South Wales pioneered rail operations, when, in 1806, a horse-drawn railway was built between Swansea and Mumbles: the Swansea-Mumbles railway started carrying fare-paying passengers in 1807 – the first in the world to do so.
In 1811, John Blenkinsop designed the first successful and practical railway locomotive.[2] He patented a system of moving coals by a rack railway worked by a steam locomotive (patent no. 3431), and a line was built connecting the Middleton Colliery to Leeds. The locomotive (The Salamanca) was built by Matthew Murray of Fenton, Murray and Wood. The Middleton Railway was the first railway to successfully use steam locomotives on a commercial basis. It was also the first railway in Great Britain to be built under the terms laid out in an Act of Parliament.
Blenkinsop's engine had double-acting cylinders and, unlike the Trevithick pattern, no flywheel. Due to previous experience of broken rails, the locomotive was made very light and this brought concerns about insufficient adhesion, so instead of driving the wheels directly, the cylinders drove a cogwheel through spur gears, the cogwheel providing traction by engaging with a rack cast into the side of the rail.
The Stockton and Darlington Railway opened in northern England in 1825 to be followed five years later by the Liverpool and Manchester Railway, considered to be the world's first "Inter City" line, which proved the viability of rail transport when, after organising the Rainhill Trials of 1829. The company took the step of working its trains from its opening entirely by steam traction. Railways then soon spread throughout the United Kingdom and the world, and became the dominant means of land transport for nearly a century, until the invention of aircraft and automobiles, which prompted a gradual decline in railways.
The rail gauge (the distance between the two rails of the track) used for the early wagonways and adopted for the Stockton and Darlington Railway became known as "standard gauge" and is used by about sixty per cent of the world's railways.
The first railroad in the United States may have been a gravity railroad in Lewiston, New York in 1764. The 1810 Leiper Railroad in Pennsylvania was intended as the first permanent railroad, and the 1826 Granite Railway in Massachusetts was the first commercial railroad to evolve through continuous operations into a common carrier. The Baltimore and Ohio, opened in 1830, was the first to evolve into a major system. In 1867, the first elevated railroad was built in New York. In 1869, the symbolically important transcontinental railroad was completed in the United States with the driving of a golden spike at Promontory, Utah. The development of the railroad in the United States helped reduce transportation time and cost, which allowed migration towards the west. Railroads increased the accessibility of goods to consumers, thus allowing individuals and capital to flow westward.
- Further information: Oldest railroads in North America
The use of overhead wires conducting electricity, invented by Granville T. Woods in 1888, amongst several other improvements, led to the development of electrified railways, the first of which in the United States was operated at Coney Island from 1892.
Richmond, Virginia had the first successful electrically-powered trolley system in the United States. Designed by electric power pioneer Frank J. Sprague, the trolley system opened its first line in January, 1888. Richmond's hills, long a transportation obstacle, were considered an ideal proving ground. The new technology soon replaced horse-powered streetcars.
Diesel and electric trains and locomotives replaced steam in many countries in the decades after World War II.
In the USSR the phenomenon of children's railways was developed since the 1930s (the world's first one was opened on July 24, 1935). Fully operated by children, they were extracurricular educational institutions, where teenagers learnt railway professions. A lot of them are functioning in post-Soviet states and Eastern European countries.
Many countries since the 1960s have adopted high-speed railways.
On 24 August 2005, the Qingzang railway became the highest railway line in the world, when track was laid through the Tanggula Mountain Pass at 5,072 meters (16,640 ft) above sea level in the Tanggula Mountains, Tibet.[3]
[edit] Operations
A railway can be broken down into two major components. Basically these are the items which "move", the rolling stock, that is the locomotives, passenger carrying vehicles (coaches), freight carrying vehicles (goods wagons/freight cars) and those which are "fixed", usually referred to as its infrastructure. This category includes the permanent way (tracks) and buildings (stations, freight facilities, viaducts and tunnels).
[edit] Signalling
Railway signalling is a system used to control railway traffic safely, essentially to prevent trains from colliding. Being guided by fixed rails, trains are uniquely susceptible to collision; furthermore, trains cannot stop quickly, and frequently operate at speeds that do not enable them to stop within sighting distance of the driver.
Most forms of train control involve movement authority being passed from those responsible for each section of a rail network (e.g., a signalman or stationmaster) to the train crew. The set of rules and the physical equipment used to accomplish this determine what is known as the method of working (UK), method of operation (US) or safeworking (Aus.). Not all these methods require the use of physical signals and some systems are specific to single track railways.
[edit] Right of way
Railway tracks are laid upon land owned or leased by the railway. Owing to the requirements for large radius turns and modest grades, rails will often be laid in circuitous routes. Public carrier railways are typically granted limited rights of eminent domain (UK:compulsory purchase). In many cases in the 19th century railways were given additional incentives in the form of grants of public land. Route length and grade requirements can be reduced by the use of alternating earthen cut and fill, bridges, and tunnels, all of which can greatly increase the capital expenditures required to develop a right of way, while significantly reducing operating costs and allowing higher speeds on longer radius curves. In densely urbanized areas such as Manhattan, railways are sometimes laid out in tunnels to minimize the effects on existing properties (see condemnation).
[edit] Safety and railway disasters
Trains can travel at very high speed; however, they are heavy, are unable to deviate from the track and require a great distance to stop. Although rail transport is considered one of the safest forms of travel, there are many possibilities for accidents to take place. These can vary from the minor derailment (jumping the track), a head-on collision with another train coming the opposite way and collision with an automobile at a level crossing/grade crossing. Level crossing collisions are relatively common in the United States where there are several thousand each year killing about 500 people - although the comparable figures in the United Kingdom are 30 and 12 (collisions and casualties, respectively). For information regarding major accidents, see List of rail accidents.
The most important safety measures are railway signalling and gates at level/grade crossings. Train whistles warn others of the presence of a train, while trackside signals maintain the distances between trains. In the United Kingdom, vandalism or negligence is thought responsible for about half of rail accidents.[citation needed]
Railway lines are zoned or divided into blocks guarded by combinations of block signals, operating rules, and automatic-control devices so that one train, at most, may be in a block at any time. Such traffic control is done in a similar way to air traffic control.
Compared with road travel, railways remain relatively safe. Annual death rates on roads are over 40,000 in the United States and about 3,000 in the United Kingdom, compared with 1,000 rail-related fatalities in the United States and under 20 in the UK.[4][5] (These figures do not account for differences in passenger-miles traveled by mode; see e.g. Transportation safety in the United States.)
[edit] Trackage
A typical railway/railroad track consists of two parallel steel (or in older networks, iron) rails, generally anchored perpendicular to beams, termed sleepers or ties, of timber, concrete, or steel to maintain a consistent distance apart, or gauge. The rails and perpendicular beams are usually then placed on a foundation made of concrete or compressed earth and gravel in a bed of ballast to prevent the track from buckling (bending out of its original configuration) as the ground settles over time beneath and under the weight of the vehicles passing above. The vehicles travelling on the rails are arranged in a train; a series of individual powered or unpowered vehicles linked together, displaying markers. These vehicles (referred to, in general, as cars, carriages or wagons) move with much less friction than do vehicles riding on rubber tires on a paved road, and the locomotive that pulls the train tends to use energy far more efficiently as a result. [citation needed]
Trackage, consisting of sleepers/ties and rails, may be prefabricated or assembled in place. Rails may be composed of segments welded or bolted, and may be of a length comparable to that of a railcar or two or may be many hundreds of feet long.
The surface of the ballast is sloped around curves to reduce side forces. This reduces the forces tending to displace the track, reduces the tendency to overturn at high speed, and makes for a more comfortable ride for standing cattle and standing or seated passengers in trains. This will be optimal at only one particular speed, however.
[edit] Track components
Railways are highly complex feats of engineering, with many hours of planning and forethought required for a successful outcome. The first component of a railway is the route, which is planned to provide the least resistance in terms of gradient and engineering works. As such, the trackbed is heavily engineered to provide, where possible, a level surface. As such, embankments are constructed to support the track, in order to provide a compromise in terms of the route's average elevation. With this in mind, sundry structures such as bridges and viaducts are constructed in an attempt to maintain the railway's elevation, and gradients are kept within manageable constraints. Where such items are not always justified, such as in hilly terrain, where routes may require long detours to avoid such features, a cutting or tunnel is dug or bored through the obstacle. Once the sundry engineering works are completed, a bed of stone (ballast) is laid over the compacted trackbed to ensure drainage around the ties and even distribution of pressure over a wider area, locking the track-work in place. This crushed stone is firmly tamped to prevent further settling and to lock the stones. Minor watercourses are led through pipes (culverts) before the grade is raised
The base of the trackage consists of treated wood or concrete "ties", also known as "sleepers". These ensure the proper distance between the rails (known as "gauge") and anchor the rail structure to the roadbed through the use of Plates. These are attached to the top of the ties in order to provide a secure housing for the rails. After placement of the rail atop the plate, spikes are driven through holes in the plate and into the tie where they are held by friction. The top of the spike has a head that clamps the rail. Alternatively, lag bolts may be used to retain the clamps; this is preferred since screws do not tend to loosen. The spaces between and surrounding the ties are filled with additional ballast to stabilize the rail assembly against movement.
[edit] Points (Turnouts or Switches)
Points (UK) or switches (US), technically known as turnouts, are the means of directing a train onto a diverging section of track, for example, a siding, a branch line, or a parallel running line. Laid similar to normal track, a point typically consists of a frog (common crossing), check rails and two switch rails. The switch rails may be moved left or right, under the control of the signalling system, to determine which path the train will follow.
[edit] Maintenance
Spikes in wooden ties can loosen over time, whilst split and rotten ties may be individually replaced with a concrete substitute. Should the rails settle owing to soil subsidence they may be lifted by specialized machinery and additional ballast tamped down to form a level elevation. Periodically, ballast must be removed and replaced with clean ballast to ensure adequate drainage, especially if wooden ties are used. Culverts and other passages for water must be kept clear lest water is impounded by the trackbed, causing landslips. Where trackbeds are placed along rivers, additional protection is usually placed to prevent erosion during times of high water, whilst Bridges are another important item requiring inspection and maintenance.
See also: Track maintenance and Maintenance of way
[edit] Terminology
In the United Kingdom and most other Commonwealth of Nations countries, the term railway is used in preference to the United States term, railroad. In Canadian speech, railway and railroad are interchangeable, although in law railway is the usual term. Railroad was used in the United Kingdom concurrently with railway until the 1850s when railway became the established term. Several American companies have railway in their names instead of railroad, the BNSF Railway being the pre-eminent modern example.
- Further information: Usage of the terms railroad and railway
In the United Kingdom, the term railway often refers to the whole organization of tracks, trains, stations, signalling, timetables and the operating companies that collectively make up a coordinated railway system, while permanent way or p/way refers to the tracks alone; however this terminology is generally not commonplace outside of the railway industry or those who take a keen interest in it.
- See also: Rail transport in the United Kingdom
Subways, metros, elevated lines, trolley lines, and undergrounds are all specialized railways.
- Further information: International railroad terminology
[edit] Rail transport by country
Of 236 countries and dependencies, 143 have rail transport (including several with very little), of which about 90 have passenger services.
[edit] Gallery
Steel trestle |
|||
[edit] See also
This article is part of the Transport series |
Modes... |
Animal-powered |
See also... |
Topics | Portal |
|
Rail transport |
---|
Operations |
Stations |
Trains |
Locomotives |
Rolling stock |
History |
History by country |
Terminology |
By country |
Accidents |
|
|
- Plateway
- Maglev train
- Economy of Earth (Transportation section)
- High-speed rail
- Hillclimbing (railway)
- Rack railway (Cog railway or Rack and pinion railway)
- Funicular
- Gravity railroad
- Spiral (railway)
- Zig Zag (railway)
- Industrial railway
- Intermodal freight transport
- Intermodal passenger transport
- Land speed record for railed vehicles
- List of heritage railways
- List of named passenger trains
- List of railway companies
- List of railway companies in Switzerland
- List of suburban and commuter rail systems
- Magnetic levitation train
- Private railroad
- Private transport
- Public transport
- Rail adhesion
- Railcar (self propelled transport)
- Rail gauge
- Rail Inspection
- Rail tracks
- Rail transport in fiction
- Railroad ecology
- Railroad-related periodicals
- Railway electrification system
- Railway ferry
- Railway Mail Service
- Railway signal
- Railway signalling
- Rapid transit
- Tycoons, Inventors, and Other Famous Railroad-related People
[edit] References
- ^ Public Transportation Ridership Statistics. American Public Transportation Association (2007). Retrieved on 2007-09-10.
- ^ John Blenkinsop. Encyclopedia Brittanica. Retrieved on 2007-09-10.
- ^ "New height of world's railway born in Tibet", Xinhua, 2005-08-24. Retrieved on 2007-09-11.
- ^ Office of Hazardous Materials Safety. A Comparison of Risk: Accidental Deaths - United States - 1999-2003. U.S. Department of Transportation. Retrieved on 2007-09-10.
- ^ Office of Rail Regulation. U.K. Health & Safety Executive. Retrieved on 2007-09-10.
[edit] Further reading
- John H. Armstrong. Railroad: What It Is, What It Does 4th Edition (1998)
- Rainer Fremdling, "Railways and German Economic Growth: A Leading Sector Analysis with a Comparison to the United States and Great Britain," The Journal of Economic History, Vol. 37, No. 3. (Sep., 1977), pp. 583-604.
- Leland H. Jenks, "Railroads as an Economic Force in American Development," The Journal of Economic History, Vol. 4, No. 1 (May, 1944), 1-20.
- O . S. Nock, ed. Encyclopedia of Railways (London, 1977), worldwide coverage, heavily illustrated
- Frederick Smeeton Williams, Our Iron Roads: Their History, Construction and Social Influences (1852) (available through google books).
- Patrick O’Brien. Railways and the Economic Development of Western Europe, 1830-1914 (1983)
- Jack Simmons and Gordon Biddle, (editors). The Oxford Companion to British Railway History: From 1603 to the 1990s (2nd ed 1999)
- Skelton, Oscar D. (1916). The Railway Builders. Glasgow, Brook, & Company, Toronto.
- John Stover, American Railroads (2nd ed 1997)
- James W. Ely Jr "Railroads & American Law" (2001) University Press of Kansas