User:Buckleyj

From Wikipedia, the free encyclopedia

Contents

For EC103, Assignment 2

1A source on:

Node 1: \frac{v_2 - v_1}{10} + 1A + \frac{2v_x - v_1}{15} = \frac{v_1}{5} Leads to 15v1 − 7v2 = 30

Node 2: \frac{2v_2 - 2v_1 - v_2}{10} = \frac{v_2 - v_1}{10} + \frac{2v_2}{10} Leads to v1 + 2v2 = 0

2A source on:

Node 1: \frac{v_2 - v_1}{10} + \frac{2v_2 - 2v_1 - v_1}{15} = \frac{v_1}{5} Leads to 7v2 − 15v1 = 0

Node 2: \frac{2v_2 - 2v_1 - v_2}{10} + 2A = \frac{2v_2}{10} + \frac{v_2 - v_1}{10} Leads to 2v2 + v1 = 20A

For 620-143 Assignment 2

B(m) = \int_{0}^{1} x^{m-1} (1-x)^{\frac{-1}{2}} dx

For physics cheat sheet

Movement

Average velocity: v_{average} = \frac{s}{t}

Acceleration: a = \frac{ \Delta\ v}{t} = \frac{v-u}{t}

Force due to gravity: Fg = mg

Momentum: p = mv

Impulse: F \Delta\ t = m \Delta\ v

Work: W = Fs = \Delta\ Energy

Kinetic energy: K_e = \frac{1}{2}mv^2

Gravitational potential energy: GPe = mgh

Force from a spring: F = − kx

Elastic potential energy: EP_e = \frac{1}{2}kx^2

Velocity around a circle: v =\frac{2 \pi\ r}{T}

Acceleration around a circle: a = \frac{v^2}{r} = \frac{4 \pi\ ^2r}{T^2}

Centripetal force: F_c = \frac{mv^2}{r}

Universal gravitation: (F is in NKg − 1) F = G\frac{M_1M_2}{r^2}

Gravitational field strength: F = G\frac{M}{r^2}

Orbits around the same mass: \frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}


Electronics

Work: W = Vq = VIt

Power: P = VI = I^2R = \frac{V^2}{R}

Voltage: V = IR

Votage divider: V_{out} = V_{in} \frac{R_2}{R_1 + R_2}

Voltage gain: G = \frac{ \Delta\ V_{out}}{ \Delta\ V_{in}}


Further Electronics

RMS: V_{RMS} = \frac{V_{peak}}{\sqrt{2}}

I_{RMS} = \frac{I_{peak}}{\sqrt{2}}

Transformer: \frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{I_s}{I_p}

Pin = Pout

Time constant: t = RC

Ripple voltage: V_{R(p-p)} = V_{max} - V_{min} = \frac{V_{max}T}{RC}

Light

Path difference for nodal lines:  p.d. = (n - \frac{1}{2}) \lambda\

Path difference for antinodal lines:  p.d. = n \lambda\

For the double slit experiment: w = \frac{ \lambda\ L}{d} = \frac{vL}{ \mathit{f} d}

For single slit experiment: sin \Theta\ = \frac{ \lambda\ }{w}

Energy of a photon: E = h \mathit{f} = \frac{hc}{ \lambda\ }

Number of photos emitted by a light source: Elightsource = nEphoton

The photoelectric effect: hf = W + KEelectron

Photon Momentum: p = \frac{E}{c} = \frac{h \mathit{f}}{c} = \frac{ \mathit{f}}{ \lambda}

de Broglie Wavelength: \mathbf{de\ Broglie\ wavelength}\ \lambda\ = \frac{h}{p} = \frac{h}{mv}

Spectra of atoms: 2 \pi\ r = n \lambda\


 \varepsilon\ = \frac{-N \Delta\ \phi\ }{ \Delta\ t}