Boundary layer control
From Wikipedia, the free encyclopedia
This article does not cite any references or sources. (December 2007) Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. |
In aeronautical engineering, boundary layer control (BLC) refers to a number of methods of controlling the boundary layer of air on the main wing of an aircraft. In doing so, parasitic drag can be greatly reduced and performance likewise increased, while the usable angle of attack can be greatly increased, thereby dramatically improving lift at slow speeds. An aircraft with a boundary layer control system thus has greatly improved performance over a similar plane without such a system, often offering the otherwise contradictory features of STOL performance and high cruising speeds.
An example of an aircraft which uses BLC is the Japanese sea plane the ShinMaywa US-1. This large four-engined aircraft is used for anti-submarine warfare (ASW) and search and rescue (SAR). It is capable of STOL operation and very low air speeds, useful for both ASW and SAR.