Bit error ratio
From Wikipedia, the free encyclopedia
This article may require cleanup to meet Wikipedia's quality standards. Please improve this article if you can. (June 2007) |
In telecommunication, an error ratio is the ratio of the number of bits, elements, characters, or blocks incorrectly received to the total number of bits, elements, characters, or blocks sent during a specified time interval.
The most commonly encountered ratio is the bit error ratio (BER) - also sometimes referred to as bit error rate.
Examples of bit error ratio are (a) transmission BER, i.e., the number of erroneous bits received divided by the total number of bits transmitted; and (b) information BER, i.e., the number of erroneous decoded (corrected) bits divided by the total number of decoded (corrected) bits.
The test time for a 95% confidence interval at several speed links is shown here:
- 40 Gbit/s (STM-256 or OC-768): 1 s
- 10 Gbit/s (STM-64 or OC-192): 3 s
- 2.5 Gbit/s (STM-16 or OC-48): 12 s
- 622 Mbit/s (STM-4c or OC-12): 48 s
- 155 Mbit/s (STM-1 or OC-3): 3.2 min
- 64 Mbit/s (STM-1 or stnd) : 6.4 min
Source: from Federal Standard 1037C and from MIL-STD-188
The test time t can be calculated using Gaussian error distribution to:
where c is the degree of confidence level, b = upper bound of BER and r = bit rate.
See the following technical article for measuring BER for High-speed serial communication. http://www.analogzone.com/nett1003.pdf
People usually plot the BER curves to describe the functionality of a digital communication system. In optical communication, BER(dB) vs. Received Power(dBm) is usually used; while in wireless communication, BER(dB) vs. SNR(dB) is used.
Curve fitting for such BER curve is a topic, attracting many research efforts.
[edit] Mathematical draft
The BER is the likelihood of a bit misinterpretation due to electrical noise w(t). Considering a bipolar NRZ transmission, we have
x1(t) = A + w(t) for a "1" and x0(t) = − A + w(t) for a "0". Each of x1(t) and x0(t) has a period of T.
Knowing that the noise has a bilateral spectral density ,
x1(t) is
and x0(t) is .
Returning to BER, we have the likelihood of a bit misinterpretation pe = p(0 | 1)p1 + p(1 | 0)p0.
and
where λ is the threshold of decision, set to 0 when p1 = p0 = 0.5.
We can use the average energy of the signal E = A2T to find the final expression :
[edit] See also
Please note that the above sample time is based on BER=10-10.