Biostimulation
From Wikipedia, the free encyclopedia
Biostimulation involves the modification of the environment to stimulate existing bacteria capable of bioremediation. This can be done by addition of various forms of rate limiting nutrients and electron acceptors, such as phosphorus, nitrogen, oxygen, or carbon (e.g. in the form of molasses). Additives are usually added to the subsurface through injection wells, although injection well technology for biostimulation purposes is still emerging. Removal of the contaminated material is also an option, albeit an expensive one. Biostimulation can be enhanced by bioaugmentation.
The primary advantage of biostimulation is that bioremediation will be undertaken by already present native microorganisms that are well suited to the subsurface environment, and are well distributed spatially within the subsurface. The primary disadvantage is that the delivery of additives in a manner that allows the additives to be readily available to subsurface microorganisms is based on the local geology of the subsurface. Tight, impermeable subsurface lithology (tight clays or other fine-grained material) make it difficult to spread additives throughout the affected area. Fractures in the subsurface create preferential pathways in the subsurface which additives preferentially follow, preventing even distribution of additives.
Investigations to determine subsurface characteristics (such as natural groundwater velocity during ambient conditions, hydraulic conductivity of the subsurface, and lithology of the subsurface) are important in developing a successful biostimulation system. In addition, a pilot-scale study of the potential biostimulation system should be undertaken prior to full-scale design and implementation.