Talk:Bernoulli process

From Wikipedia, the free encyclopedia

WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, which collaborates on articles related to mathematics.
Mathematics rating: B Class Mid Priority  Field: Probability and statistics

I believe an equation associated with this is:

 tCw * (p(s)^w) * (p(f)^(t-w))

Where t is total number of trials, w is the number of successes wanted, p(s) is the probability of success, p(f) is the probability of failure. Is this correct, and perhaps added? I am not sure. -- KneeLess 04:09, 20 Sep 2004 (UTC)


This article may be too technical for a general audience.
Please help improve this article by providing more context and better explanations of technical details to make it more accessible, without removing technical details.

The mathematics articles in Wikipedia seem as if they are all written for somebody with a mathematical or engineering background. I thought the wikipedia was written for general readers? 69.140.164.142 05:20, 27 March 2007 (UTC)

Each article is written at a level appropriate to the subject. There is no point, for example, in writing an article on motives for the general reader. However, in this case, I agree with you: an article on an important process like this should at least start in a way which is accessible to the numerate layperson. Can you improve it? Geometry guy 15:00, 13 May 2007 (UTC)
I, for one, think the level of the article is fine. The intro parts basically describe what each of the R.V represent, and the Memoryless property link seems to be fine. The main stumbling block for the real amateur is most likely the basic idea behind a "process". They can click on Stochastic Process and learn more about that.

On a unrelated note, are there practical uses for this simplistic process? If so, we should probably put that in. Akshayaj 21:21, 18 July 2007 (UTC)

Yes, if you consider mathematical applications practical. A number of important probabilistic models are based on Bernoulli processes, perhaps in disguise: For example, a one-dimensional simple random walk is defined in terms of a Bernoulli process, where each "coin flip" tells you whether to step left or right. Since any countable index set (e.g. the set of edges in a lattice) is equivalent to the integers, Bernoulli percolation is determined by a Bernoulli process in which 1s represent open edges and 0s represent closed edges. I'm sure there are other examples as well. 128.95.224.52 01:14, 19 October 2007 (UTC)