Bernoulli distribution

From Wikipedia, the free encyclopedia

Bernoulli
Probability mass function
Cumulative distribution function
Parameters 1>p>0, p\in\R
Support k=\{0,1\}\,
Probability mass function (pmf) 
    \begin{matrix}
    q=(1-p) & \mbox{for }k=0 \\p~~ & \mbox{for }k=1
    \end{matrix}
Cumulative distribution function (cdf) 
    \begin{matrix}
    0 & \mbox{for }k<0 \\q & \mbox{for }0\leq k<1\\1 & \mbox{for }k\geq 1
    \end{matrix}
Mean p\,
Median N/A
Mode \begin{matrix}
0 & \mbox{if } q > p\\
0, 1 & \mbox{if } q=p\\
1 & \mbox{if } q < p
\end{matrix}
Variance pq\,
Skewness \frac{q-p}{\sqrt{pq}}
Excess kurtosis \frac{6p^2-6p+1}{p(1-p)}
Entropy -q\ln(q)-p\ln(p)\,
Moment-generating function (mgf) q+pe^t\,
Characteristic function q+pe^{it}\,

In probability theory and statistics, the Bernoulli distribution, named after Swiss scientist Jakob Bernoulli, is a discrete probability distribution, which takes value 1 with success probability p and value 0 with failure probability q = 1 − p. So if X is a random variable with this distribution, we have:

 \Pr(X=1) = 1 - \Pr(X=0) = 1 - q = p.\!

The probability mass function f of this distribution is

 f(k;p) = \left\{\begin{matrix} p & \mbox {if }k=1, \\
1-p & \mbox {if }k=0, \\
0 & \mbox {otherwise.}\end{matrix}\right.

The expected value of a Bernoulli random variable X is E\left(X\right)=p, and its variance is

\textrm{var}\left(X\right)=p\left(1-p\right).\,

The kurtosis goes to infinity for high and low values of p, but for p = 1 / 2 the Bernoulli distribution has a lower kurtosis than any other probability distribution, namely -2.

The Bernoulli distribution is a member of the exponential family.

[edit] Related distributions

[edit] See also