Benzbromarone
From Wikipedia, the free encyclopedia
Benzbromarone
|
|
Systematic (IUPAC) name | |
(3,5-dibromo-4-hydroxyphenyl)- (2-ethyl-3-benzofuranyl)methanone | |
Identifiers | |
CAS number | |
ATC code | M04 |
PubChem | |
Chemical data | |
Formula | C17H12Br2O3 |
Mol. mass | 424.083 g/mol |
SMILES | & |
Physical data | |
Melt. point | 161–163 °C (322–325 °F) |
Pharmacokinetic data | |
Bioavailability | ? |
Metabolism | ? |
Half life | ? |
Excretion | ? |
Therapeutic considerations | |
Pregnancy cat. |
? |
Legal status | |
Routes | ? |
Benzbromarone (INN) is a uricosuric agent used in the treatment of gout, especially when allopurinol, a first-line treatment, fails or produces intolerable adverse effects. It is structurally related to the antiarrhythmic amiodarone.[1]
Benzbromarone is highly effective and well-tolerated,[2][3][4][5] and clinical trials as early as 1981 and as recently as April 2008 have suggested it is superior to both allopurinol and probenecid, another uricosuric drug.[6][7]
[edit] Effect on cytochrome P450
Benzbromarone is a very potent inhibitor of CYP2C9.[8][1] Several analogues of the drug have been developed as CYP2C9 and CYP2C19 inhibitors for use in research.[9][10]
[edit] See also
[edit] References
- ^ a b Kumar V, Locuson CW, Sham YY, Tracy TS (October 2006). "Amiodarone analog-dependent effects on CYP2C9-mediated metabolism and kinetic profiles". Drug Metab. Dispos. 34 (10): 1688–96. doi: . PMID 16815961.
- ^ Heel RC, Brogden RN, Speight TM, Avery GS (November 1977). "Benzbromarone: a review of its pharmacological properties and therapeutic use in gout and hyperuricaemia". Drugs 14 (5): 349–66. PMID 338280.
- ^ Masbernard A, Giudicelli CP (May 1981). "Ten years' experience with benzbromarone in the management of gout and hyperuricaemia". S. Afr. Med. J. 59 (20): 701–6. PMID 7221794.
- ^ Perez-Ruiz F, Alonso-Ruiz A, Calabozo M, Herrero-Beites A, García-Erauskin G, Ruiz-Lucea E (September 1998). "Efficacy of allopurinol and benzbromarone for the control of hyperuricaemia. A pathogenic approach to the treatment of primary chronic gout". Ann. Rheum. Dis. 57 (9): 545–9. PMID 9849314.
- ^ Reinders MK, van Roon EN, Houtman PM, Brouwers JR, Jansen TL (September 2007). "Biochemical effectiveness of allopurinol and allopurinol-probenecid in previously benzbromarone-treated gout patients". Clin. Rheumatol. 26 (9): 1459–65. doi: . PMID 17308859.
- ^ Schepers GW (1981). "Benzbromarone therapy in hyperuricaemia; comparison with allopurinol and probenecid". J. Int. Med. Res. 9 (6): 511–5. PMID 7033016.
- ^ Reinders MK, van Roon EN, Jansen TL, et al (April 2008). "Efficacy and tolerability of urate lowering drugs in gout: a randomised controlled trial of benzbromarone versus probenecid after failure of allopurinol". Ann. Rheum. Dis.. doi: . PMID 18250112.
- ^ Hummel MA, Locuson CW, Gannett PM, et al (September 2005). "CYP2C9 genotype-dependent effects on in vitro drug-drug interactions: switching of benzbromarone effect from inhibition to activation in the CYP2C9.3 variant". Mol. Pharmacol. 68 (3): 644–51. doi: . PMID 15955872.
- ^ Locuson CW, Rock DA, Jones JP (June 2004). "Quantitative binding models for CYP2C9 based on benzbromarone analogues". Biochemistry 43 (22): 6948–58. doi: . PMID 15170332.
- ^ Locuson CW, Suzuki H, Rettie AE, Jones JP (December 2004). "Charge and substituent effects on affinity and metabolism of benzbromarone-based CYP2C19 inhibitors". J. Med. Chem. 47 (27): 6768–76. doi: . PMID 15615526.
|