Talk:BCH code
From Wikipedia, the free encyclopedia
Contents |
[edit] Another problem with the references
The last two links in the references are broken. 194.171.252.100 09:53, 14 September 2007 (UTC)
[edit] Problem with reference
The second reference, to | this PDF, is not accessible to people without an account on the relevant database. As such, it seems that a full citation would be more appropriate: A Simple Step-by-Step Decoding of Binary BCH Codes CHR et al. IEICE Trans Fundamentals.2005; E88-A: 2236-2239 --Dyfrgi 07:55, 11 January 2007 (UTC)
[edit] Encoding/Decoding
The examples are not very elaborate. How does one create the generator polynomial m1,3,... from m1, m3, ...? What is the importance of x4 + x + 1? The way to determine the cycles of roots of m1, m3, m5 and m7 are not explained. It's not clarified that Cr means the redundancy polynomial. How do I calculate the syndrome values? How do I calculate the error locator polynomials? Shall I continue?
Can anyone please provide us with a complete algorithm description, detailed enough so it can be replicated on paper or in source code?
--Zom-B 16:54, 24 June 2007 (UTC)
The example didn't seem to be right so I have expanded it. The encoding section needs to be revised accordingly but I don't have time to do that right now. Richard Pinch 06:50, 30 June 2007 (UTC)
[edit] Dispute on Graph
I dont know how this is going to be useful, but to the best of my knowledge this is the graph I obtained from running my simulation code. The main program is given here (ancillary functions omitted for want of space). You can get the full program from | here.
#!/usr/bin/octave -q #A simple communications channel, %BPSK uncoded. System.BER=[]; System.Error=[]; System.Length=36*1000; System.Mesg=zeros(1,System.Length); System.Coded=[]; %BCH coded. System.BCHError=[]; System.BCHBER=[]; System.BCHLength=System.Length*(63.0/36.0); System.BCHCoded=zeros(1,System.BCHLength); System.BCHDeCoded=[]; %BPSK parameters. System.Modulated=[]; System.DeModulated=[]; System.DeCoded=[]; System.CarrierRate=10; System.DataRate=2; System.SNRdb=0:0.5:10; gen_poly=BCH_poly(); Length=length(System.SNRdb); System.BCHActualErrors=zeros(1,Length); System.BCHCorrected=zeros(1,Length); %Additive White Gaussian Noise, power. System.N0=5; for iter=1:Length disp('=>') System.SNRdb(iter) System.BCHBER disp('Simulating AWGN channel with BCH & BPSK') %Value of SNR Eb=System.SNR=10^(System.SNRdb(iter)/10)*System.N0; %Signal strength, power. System.Eb= System.SNR*System.N0; Ec=Eb*36.0/63.0; %Source Message System.Mesg=mod(floor(randn(1,System.Length)),2); Rxword=[]; Chunks=length(System.Mesg)/36; for biter=1:Chunks bmesg=System.Mesg((biter-1)*36+1:biter*36); cwmesg=GF_product(gen_poly,GF_polarize(bmesg)); %convert from the 0,-1 mode to the 1,0 mode. cwmesgTx=cwmesg+1; System.BCHCoded((biter-1)*63+1:(biter)*63)=cwmesg; %Modulate BPSK bch1=bpskmod(cwmesgTx,20,10,sqrt(Ec)); %Add noise bch2=bch1+sqrt(System.N0)*boxmuller(length(bch1)); %Demodulate BPSK cwRx=bpskdemod(bch2,20,10,sqrt(Ec)); % This is in the +1,+0 mode, % convert to a 0,-1 mode cwrecv=cwRx-1; Rxword=[Rxword cwrecv]; %error pos gives roots w.r.t index of 0. errpos=BCH_decode_berlekamp(cwrecv,63,36,5);%_berlekamp %so add +1, to convert error position locations form 0 index, to +1 index. errpos=errpos+1; if isempty(errpos) %disp('Codeword is correct') correctw=cwrecv; else %printf('Correcting %d errors\n',length(errpos)) %errpos correctw=cwrecv; for i=1:length(errpos) %flip the bits, correctw(errpos(i))=-(1+correctw(errpos(i))); end end %disp('Corrected CW') %correctw %fgets(stdin) CorrectError=length(errpos); System.BCHCorrected(iter)=System.BCHCorrected(iter)+CorrectError; System.BCHDeCoded((biter-1)*63+1:biter*63)=correctw; end System.BCHActualErrors(iter)=Difference(System.BCHCoded,Rxword); System.BCHError(iter)=Difference(System.BCHCoded,System.BCHDeCoded); System.BCHBER(iter)=System.BCHError(iter)/System.BCHLength; %BPSK part of simulation, System.Coded=System.Mesg; %Modulate System.Modulated=bpskmod(System.Coded,System.CarrierRate,System.DataRate,sqrt(System.Eb)); %Channel with AWGN System.Channel=System.Modulated + sqrt(System.N0)*randn(1,length(System.Modulated)); %DeModulate System.DeModulated=bpskdemod(System.Channel,System.CarrierRate,System.DataRate,sqrt(System.Eb)); %Channel Decode System.DeCoded=System.DeModulated; %Error Calculation System.Error(iter)=Difference(System.Coded,System.DeCoded); System.BER(iter)=System.Error(iter)/System.Length; end disp('System Error') System.Error disp('System BER') System.BER disp('System.BCHError') System.BCHError disp('System.BCHBER') System.BCHBER disp('System BCH Actual') System.BCHActualErrors disp('System BCH Corrected') System.BCHCorrected disp('System SNRdb') System.SNRdb semilogy(System.SNRdb,System.BER,";Simulated BPSK;",System.SNRdb,0.5*erfc(sqrt(10.^(System.SNRdb/10))),";Theoretical BPSK;",System.SNRdb,System.BCHBER,";Simulated BCH, [63,36];") title "BPSK Uncoded, Vs BCH Coded systems" save bchchannel_sim System fgets(stdin) fgets(stdin)
Let me know whats the problem, if there is any. --பராசக்தி 16:48, 16 September 2006 (UTC)
I tried to run your code on my octave, but I don't have the required other functions. Perhaps, it is better to consider the theoretical error rate. The (63,36) Binary BCH code with Berlekamp-Massey decoding should correct all error patterns of weight <= 5 and no error patterns of weight >5. Since the theoretical BER for BPSK is
,
we can write
where is the raw error rate at the input of the decoder (due to the rate adjusted SNR). This assumes further that all decoder failures are detected, which is not a terrible assumption for this code.
I think that p should be equal to your "simulated BPSK" error rate. Perhaps you could add these theoretical curves to your graph to see what is going on.
Here is my Matlab code (apologies but my Octave installation has never quite worked for me).
n = 63; k = 36; t = 5; rate = k/n; ebno = 0:0.5:10; bpsk_ber = 0.5*erfc(sqrt(10.^(ebno/10))); coded_raw_ber = 0.5*erfc(sqrt(10.^(rate*ebno/10))); coded_ber = 0*coded_raw_ber; b = (0:n)/n; b(1:(t+1)) = 0; for i=1:length(ebno) coded_ber(i) = dot(binopdf(0:n,n,coded_raw_ber(i)),b); end semilogy(ebno,bpsk_ber,'r-',ebno,coded_raw_ber,'g-',ebno,coded_ber,'b-'); title('(63,36) BCH with bounded distance decoding'); legend('BPSK','Input to decoder','After decoder',3); grid on
I have given a link to the code tarball on my website. Please use that for the other functions. AFAIK I think it is correct. The method maybe different, but I think it is statistically significant, as I ran the code for 36000 bits and got BER for 1e-4 (10x more bits than 1/BER). Also the right way would be to perform any simulation for just about till 10 errors or 100 errors accumulate at each SNR value as I understand from books by Moore on ECC. Let me know, now that other functions are avaiable. I will try & check your claims as well. --பராசக்தி 00:38, 19 September 2006 (UTC)
---
Here is an updated version of my code which uses the Matlab Communications Toolbox for the simulation. The theoretical BER formula/curve was updated to count only message bit errors.
n = 63; k = 36; t = 5; rate = k/n; ebno = 0:0.5:10; ebno_lin = 10.^(ebno/10); bpsk_ber = 0.5*erfc(sqrt(ebno_lin)); coded_raw_ber = 0.5*erfc(sqrt(rate*ebno_lin)); coded_ber = 0*coded_raw_ber; % Theory [X,Y] = meshgrid(0:k,0:n-k); T = (((X+Y)>t)+0).*X; for i=1:length(ebno) msg_err = binopdf(0:k,k,coded_raw_ber(i)); par_err = binopdf(0:(n-k),n-k,coded_raw_ber(i))'; joint = msg_err(ones(1,n-k+1),:) .* par_err(:,ones(1,k+1)); coded_ber(i) = sum(sum(T.*joint))/k; end % Simulation (all zeros codeword) M = 500; sim_ber = zeros(1,length(ebno)); for i=1:2:15 y = -1 + randn(M,n)/sqrt(2*rate*ebno_lin(i)); ybit = (y>0)+0; xhat = bchdec(gf(ybit,1),n,k); sim_ber(i) = sum(sum(xhat~=0))/M/k; end semilogy(ebno,bpsk_ber,'r-',ebno,coded_raw_ber,'g-',ebno,coded_ber,'b-',ebno,sim_ber,'bo'); title('(63,36) BCH with bounded distance decoding'); legend('BPSK','Input to decoder','After decoder','Simulation',3); xlabel('E_n / N_0'); ylabel('BER'); grid on; set(gca,'YLim',[1e-7 1]);
The results of this script are plotted here. You will notice the theory and simulation now match because they are both correct.