ATP5L
From Wikipedia, the free encyclopedia
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit G
|
||
Identifiers | ||
Symbol(s) | ATP5L; ATP5JG | |
External IDs | HomoloGene: 86074 | |
RNA expression pattern | ||
Orthologs | ||
Human | Mouse | |
Entrez | 10632 | n/a |
Ensembl | ENSG00000167283 | n/a |
Uniprot | O75964 | n/a |
Refseq | NM_006476 (mRNA) NP_006467 (protein) |
n/a (mRNA) n/a (protein) |
Location | Chr 11: 117.78 - 117.79 Mb | n/a |
Pubmed search | [1] | n/a |
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit G, also known as ATP5L, is a human gene.[1]
Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, F0, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The F0 seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the g subunit of the F0 complex.[1]
[edit] References
[edit] Further reading
- Kinosita K, Yasuda R, Noji H (2003). "F1-ATPase: a highly efficient rotary ATP machine.". Essays Biochem. 35: 3–18. PMID 12471886.
- Oster G, Wang H (2003). "Rotary protein motors.". Trends Cell Biol. 13 (3): 114–21. PMID 12628343.
- Leyva JA, Bianchet MA, Amzel LM (2003). "Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review).". Mol. Membr. Biol. 20 (1): 27–33. PMID 12745923.
- Elston T, Wang H, Oster G (1998). "Energy transduction in ATP synthase.". Nature 391 (6666): 510–3. doi: . PMID 9461222.
- Wang H, Oster G (1998). "Energy transduction in the F1 motor of ATP synthase.". Nature 396 (6708): 279–82. doi: . PMID 9834036.
- Zhang QH, Ye M, Wu XY, et al. (2001). "Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells.". Genome Res. 10 (10): 1546–60. PMID 11042152.
- Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination.". Genome Res. 10 (11): 1788–95. PMID 11076863.
- Wiemann S, Weil B, Wellenreuther R, et al. (2001). "Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs.". Genome Res. 11 (3): 422–35. doi: . PMID 11230166.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Cross RL (2004). "Molecular motors: turning the ATP motor.". Nature 427 (6973): 407–8. doi: . PMID 14749816.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Wiemann S, Arlt D, Huber W, et al. (2004). "From ORFeome to biology: a functional genomics pipeline.". Genome Res. 14 (10B): 2136–44. doi: . PMID 15489336.
- Mehrle A, Rosenfelder H, Schupp I, et al. (2006). "The LIFEdb database in 2006.". Nucleic Acids Res. 34 (Database issue): D415–8. doi: . PMID 16381901.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry.". Mol. Syst. Biol. 3: 89. doi: . PMID 17353931.