ARFGAP3
From Wikipedia, the free encyclopedia
ADP-ribosylation factor GTPase activating protein 3
|
||||||||||||||
PDB rendering based on 2crw. | ||||||||||||||
Available structures: 2crw | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | ARFGAP3; ARFGAP1 | |||||||||||||
External IDs | MGI: 1913501 HomoloGene: 49391 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 26286 | 66251 | ||||||||||||
Ensembl | ENSG00000100262 | ENSMUSG00000054277 | ||||||||||||
Uniprot | Q9NP61 | Q544V6 | ||||||||||||
Refseq | NM_014570 (mRNA) NP_055385 (protein) |
XM_988550 (mRNA) XP_993644 (protein) |
||||||||||||
Location | Chr 22: 41.52 - 41.58 Mb | Chr 15: 83.13 - 83.18 Mb | ||||||||||||
Pubmed search | [1] | [2] |
ADP-ribosylation factor GTPase activating protein 3, also known as ARFGAP3, is a human gene.[1]
The protein encoded by this gene is a GTPase-activating protein (GAP) which associates with the Golgi apparatus and which is thought to interact with ADP-ribosylation factor 1 (ARF1). The encoded protein likely promotes hydrolysis of ARF1-bound GTP, which is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is a prerequisite for the fusion of these vesicles with target compartments. The activity of this protein is sensitive to phospholipids. This gene was originally known as ARFGAP1, but that is now the name of a related but different gene.[1]
[edit] References
[edit] Further reading
- Matoba R, Okubo K, Hori N, et al. (1994). "The addition of 5'-coding information to a 3'-directed cDNA library improves analysis of gene expression.". Gene 146 (2): 199–207. PMID 8076819.
- Dunham I, Shimizu N, Roe BA, et al. (1999). "The DNA sequence of human chromosome 22.". Nature 402 (6761): 489–95. doi: . PMID 10591208.
- Zhang C, Yu Y, Zhang S, et al. (2000). "Characterization, chromosomal assignment, and tissue expression of a novel human gene belonging to the ARF GAP family.". Genomics 63 (3): 400–8. doi: . PMID 10704287.
- Liu X, Zhang C, Xing G, et al. (2001). "Functional characterization of novel human ARFGAP3.". FEBS Lett. 490 (1-2): 79–83. PMID 11172815.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Collins JE, Goward ME, Cole CG, et al. (2003). "Reevaluating human gene annotation: a second-generation analysis of chromosome 22.". Genome Res. 13 (1): 27–36. doi: . PMID 12529303.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Collins JE, Wright CL, Edwards CA, et al. (2005). "A genome annotation-driven approach to cloning the human ORFeome.". Genome Biol. 5 (10): R84. doi: . PMID 15461802.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Barrios-Rodiles M, Brown KR, Ozdamar B, et al. (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells.". Science 307 (5715): 1621–5. doi: . PMID 15761153.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.". Cell 127 (3): 635–48. doi: . PMID 17081983.