Image:Antideriv1.gif

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

La bildo estas kopiita de wikipedia:en. La originala priskribo estas:

[edit] Summary

Author: Zbigniew Fiedorowicz
Created in Microsoft Excel and Maple
An approximation to the graph of a pathological, highly non-continuous function, which nevertheless has an w:antiderivative (Example 4). The parametric equation for this graph is

t\mapsto\left(\sum_{n=1}^8\frac{(t-\cos(n))^{1/3}}{2^n},
\frac{1}{\sum_{n=1}^8\frac{(t-\cos(n))^{-2/3}}{3\cdot 2^n}}\right)

where -1\le t\le1 and where \frac{1}{\sum_{n=1}^8\frac{(t-\cos(n))^{-2/3}}{3\cdot 2^n}} is taken to be 0 for t=\cos(1),\cos(2),\dots,\cos(8). In the actual example, 8 in the upper limit of summation shoud be replaced by \infty.

[edit] Licensing

I, the copyright holder of this work, have published or hereby publish it under the following license:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation license, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation license".

Aragonés | العربية | Asturianu | Български | বাংলা | ইমার ঠার/বিষ্ণুপ্রিয়া মণিপুরী | Brezhoneg | Bosanski | Català | Cebuano | Česky | Dansk | Deutsch | Ελληνικά | English | Esperanto | Español | Eesti | Euskara | فارسی | Suomi | Français | Gaeilge | Galego | עברית | Hrvatski | Magyar | Bahasa Indonesia | Ido | Íslenska | Italiano | 日本語 | ქართული | ភាសាខ្មែរ | 한국어 | Kurdî / كوردی | Latina | Lëtzebuergesch | Lietuvių | Bahasa Melayu | Nnapulitano | Nederlands | ‪Norsk (nynorsk)‬ | ‪Norsk (bokmål)‬ | Occitan | Polski | Português | Română | Русский | Slovenčina | Slovenščina | Shqip | Српски / Srpski | Svenska | తెలుగు | ไทย | Türkçe | Українська | اردو | Tiếng Việt | Volapük | Yorùbá | ‪中文(中国大陆)‬ | ‪中文(台灣)‬ | +/-

date/time username edit summary
20:41, 13 December 2005 en:User:Fiedorow (<span class="autocomment"><a href="/wiki/Image:Antideriv1.gif#Summary" title="Image:Antideriv1.gif">→</a>Summary</span>)
04:43, 12 December 2005 en:User:Fiedorow (<span class="autocomment"><a href="/wiki/Image:Antideriv1.gif#Summary" title="Image:Antideriv1.gif">→</a>Summary</span>)
04:37, 12 December 2005 en:User:Fiedorow (<span class="autocomment"><a href="/wiki/Image:Antideriv1.gif#Summary" title="Image:Antideriv1.gif">→</a>Summary</span>)
03:45, 11 December 2005 en:User:Fiedorow (Author: Zbigniew Fiedorowicz Created in Microsoft Excel and Paint Shop Pro)

[edit] Historio de la dosiero

Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.

Click on date to download the file or see the image uploaded on that date.

  • (del) (cur) 16:38, 13 December 2005 . . Fiedorow ( en:User_talk:Fiedorow Talk) . . 483x483 (8708 bytes) (== Summary == Author: Zbigniew Fiedorowicz<br> Created in Microsoft Excel and Maple<br> An approximation to the graph of a pathological, highly non-continuous function, which nevertheless has an en:Antiderivative antiderivative (Example 4). The parametric equation for )
  • (del) (rev) 03:45, 11 December 2005 . . Fiedorow ( en:User_talk:Fiedorow Talk) . . 205x151 (3564 bytes) (Author: Zbigniew Fiedorowicz Created in Microsoft Excel and Paint Shop Pro )

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current17:03, 18 March 2006483×483 (9 KB)Maksim (La bildo estas kopiita de wikipedia:en. La originala priskribo estas: == Summary == Author: Zbigniew Fiedorowicz<br> Created in Microsoft Excel and Maple<br> An approximation to the graph of a pathological, highly non-continuous function, which neverthel)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):