Image:Angular Parameters of Elliptical Orbit.png
From Wikipedia, the free encyclopedia
Size of this preview: 600 × 600 pixels
Full resolution (1,200 × 1,200 pixels, file size: 197 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. The description on its description page there is shown below.
|
Contents |
[edit] Description (English)
Raytraced image showing the concepts of inclination, longitude of the ascending node, and argument of the periapsis for a "minor" object in an elliptic orbit around a larger object.
[edit] Legend
Letters in the image denote:
- A – Minor, orbiting body
- B – Major body being orbited by A
- C – Reference plane, e.g. the
- D – Orbital plane of A
- E – Descending node
- F – Periapsis
- G – Ascending node
- H – Apoapsis
- i – Inclination
- J – Reference direction; for orbits in or near the ecliptic, usually the vernial point
- Ω – Longitude of the ascending node
- ω – Argument of the periapsis
The red line is the line of apsides; going through the periapsis (F) and apoapsis (H); this line coincides wíth the major axix in the elliptical shape of the orbit
The green line is the node line; going through the ascending (G) and descending node (E); this is where the reference plane (C) intersects the orbital plane (D).
[edit] Raytacing
This image was created using the Persistence of Vision Raytracer and the scene description code below: You can use this free raytracing package and the scene description below to re-render the image in new resolutions, or modify the description and thus the image being rendered.
A few notes of caution for those who wants to do their own renditions of this image:
- The "camera" (viewpount) assumes that the image format i square (i.e. has the same number of pixels in width and height) - to acheive this, use the +w and +h command line options to set the same number of pixels in width and height, respectively.
- This image comes complete with the letter annotations, and for this, the POV-Ray installation needs acces to the TrueType fonts timesbi.ttf (Times new roman, bold and italic) and symbol.ttf (for greek letters). These come as standard on a Microsoft Windows installation, so this image should at least be able to render in POV-Ray for Windows.
- A little "dirty trick" is used to put those annotations there; they are text objects placed right in front of the "camera" that "sees" the scenario. Because of this, if you modify the camera location and/or look_at-point in the code, you need to either delete the annotations or make sure they "move with" the camera.
[edit] Four images in one the same description
Rendering the scene description as shown below renders this image, showing all three angular out of the six orbital elements. Some found this image to be a little too crammed and overwhelming, så I modified the original description to render not only this combined image, but also three other, similar images, each showing only one of the three angles.
Line 10 in the description reads:
#declare View=0;
As described in the comments starting from line 11, the 0 in the above line results in the combined image showing all three angles. Replacing the 0 with a 1, 2 or a 3 gives images that demonstrates one of the angles;
- Argument of the periapsis (see Image:Argument of Periapsis in Elliptical Orbit.png)
- Longitude of the ascending (see Image:Longitude of Ascending Node in Elliptical Orbit.png)
- Inclination (see Image:Inclination in Elliptical Orbit.png)
[edit] Beskrivelse (Dansk)
Raytracet billede der demonstrerer inklination, den opstigende knudes længde og periapsisargumentet for et mindre himmellegeme i elliptisk kredsløb om et større.
[edit] Nøgle
Bogstaverne i billedet angiver:
- A – Det mindre himmellegeme
- B – Det større himmellegeme
- C – Referenceplan, f.eks.
- D – Baneplan for A's omløb
- E – Nedadgående knude
- F – Periapsis
- G – Opstigende knude
- H – Apoapsis
- i – Inklination
- J – Referenceretning; for baner i eller nær ekliptikas plan typisk forårspunktet i Vædderen
- Ω – Opstigende knudes længde
- ω – Periapsisargument
[edit] Raytracing
Billedet er lavet med raytracin-programmet Persistence of Vision Raytracer, samt den scenarie-beskrivelse der er vist nedenfor. Du kan bruge dette gratis raytracing-program og beskrivelsen nedenfor til at renderer billedet i nye opløsninger, eller lave ændringer i beskrivelsen og dermed også i det endelige billede.
Et par detaljer man skal være opmærksom på hvis man vil rendere billedet:
- "Kameraet" (betragtningspunktet) i billedet går ud fra at det færdige billede får et kvadratisk format, dvs. har lige mange pixels i bredden og højden. Man bør derfor bruge kommandolinje-ordrerne +w og +h til at specificere det samme antal pixels i respektive bredden og højden.
- Billedet leveres "komplet", inklusiv bogstav-annotationerne. For at lave disse, Persistence of Vision-programmet have adgang til Truetype-skrifttyperne timesbi.ttf (Times New Roman i fed og kursiv) og symbol.ttf (for græske bogstaver). Disse er standard i en Microsoft Windows-installation, så denne scenarie-beskrivelse skulle kunne køre fejlfrit med Persistence of Vision Raytracer for Windows.
- Der er brugt et lille "sidegade-kneb" til at lave bogstav-annotationerne; de er text-objekter anbragt lige foran camera'et, så hvis man flytter på synsretningen mod motivet, skal man enten sørge for at annotationerne "flytter med" synsretningen, eller helt fjerne dem.
[edit] Fire billeder ud af én beskrivelse
Hvis man renderer scenariebeskrivelsen som den er vist nedenfor, får man dette billede der viser alle de tre parametre for en omløbsbane der er vinkler. Nogen synes at der er lidt for meget overvældende detaljemylder i billedet, så jeg ændrede beskrivelsen så den kan bruges til ikke blot hosstående billede, men også tre andre tilsvarende billeder, der blot kun beskriver én af vinklerne "ad gangen".
I linje 10 i beskrivelsen står der:
#declare View=0;
Som beskrevet i de kommentarer der starter fra linje 11, giver 0'et i ovenstående linje det kombinerede billeder der viser alle tre vinkler. Erstatter man 0'et med enten 1, 2 eller 3, får man billeder der viser én vinkel:
- for periapsisargumentet (se Image:Argument of Periapsis in Elliptical Orbit.png)
- for den opstigende knudes længde (se Image:Longitude of Ascending Node in Elliptical Orbit.png)
- for banehældning (se Image:Inclination in Elliptical Orbit.png)
[edit] Licensing
[edit] POV-Ray Scene description
POV-ray image description:
/* ================================================ Three Angular Parameters of the Elliptical Orbit ------------------------------------------------ Created by Søren Peo Pedersen - see my user page at http://da.wikipedia.org/wiki/Bruger:Peo ================================================ */ #declare View=0; // 0 for all three angles // 1 for arugment of the periapsis only // 2 for longitude of the ascending node only // 3 for inclination only #declare txtLatLonGrid=texture { // Texture for latitude pigment {color rgb <.4,.7,1>} // and longnitude lines finish {ambient .6} // on planet } #declare txtPlanet=texture { // Texture for planet pigment {color rgb <0,.5,1>} finish {ambient .6} } #local txtLatitudes=texture { // Texture with latitudes only gradient y texture_map { [0 txtPlanet] #local Cnt=-9; #while (Cnt<9) [.5+sin(Cnt*.174533-.02)/2 txtPlanet] [.5+sin(Cnt*.174533-.02)/2 txtLatLonGrid] [.5+sin(Cnt*.174533+.02)/2 txtLatLonGrid] [.5+sin(Cnt*.174533+.02)/2 txtPlanet] #local Cnt=Cnt+3; #end [1 txtPlanet] } translate <0,-.5,0> scale 10 } #local Arrowhead=difference { box {<-5,-.002,0>,<0,.002,5> rotate <0,45,0> scale <1,1,3>} plane {<0,0,-1>,-1.5} } #macro AngleArc(DegreeNumber,Radius) merge { difference { cylinder {<0,-.002,0>,<0,.002,0>,Radius+.1} cylinder {<0,-1,0>,<0,1,0>,Radius-.1} plane {<0,0,1>,0 rotate <0,degrees(asin(1/Radius)),0>} plane {<0,0,-1>,0 rotate <0,DegreeNumber-degrees(asin(1/Radius)),0>} } #object {Arrowhead rotate <0,-6,0> translate <Radius,0,0> rotate <0,DegreeNumber-180,0>} #object {Arrowhead rotate <0,6,0> translate <-Radius,0,0>} pigment {color rgb <1,1,1>} finish {ambient 1} } #end sphere {0,5 // "Main" planet texture { object { union { #local Cnt=0; #while (Cnt<18) box {<-.1,-8,-8>,<.1,8,8> rotate <0,10*Cnt+11,0>} #local Cnt=Cnt+3; #end } texture {txtLatitudes} texture {txtLatLonGrid} } } } #if (View=0 | View=2) merge { // Arrow poin- box {<-.1,-.001,0>,<.1,.001,-23>} // ting to re- #object {Arrowhead translate <0,0,-24>} // ference pigment {color rgb<.8,.4,1>} // point (typi- finish {ambient 1 diffuse 0} // cally vene- rotate <0,0,0> // rian point) } #end #local Sma=20; // Semimajor axis #local Smi=16; // Semiminor axis #local Incl=60; // Inclination #if (View=0|View=2) #object { // Measures longitude of ascending node #if (View=2) AngleArc(60,20) #else AngleArc(60,7.5) #end rotate <0,210,0>} #end #local txtOrbitPlane=texture { // Orbit pigment {color rgbt<1,.9,0,.5>} // plane finish {ambient .4} // texture } #local txtOrbitMarking=texture { // Texture for pigment {color rgb<1,.9,0>} // markings on finish {ambient 1 diffuse 0} // orbit plane } union { disc {0,<0,1,0>,1,0 // Elliptic "disc" indicating scale <Sma,1,Smi> // the area inside the orbit translate <sqrt(Sma*Sma-Smi*Smi),0,0> texture { #if (View=0|View=3) object { difference { box {<-1,-1,#if (View=0) -9 #else -18 #end>,<1,1,0>} box {<-.8,-2,-1.8>,<.6,2,1>} box {<-2,-2,-99>,<.6,2,-2>} #if (View=0) translate <16,0,0> #else translate <7,0,0> #end rotate <0,-40,0> } texture {txtOrbitPlane} texture {txtOrbitMarking} } #else txtOrbitPlane #end } } difference { // Ourbit edge outline cylinder {<0,-.001,0>,<0,.001,0>,1 scale <Sma+.15,1,Smi+.15> } cylinder {<0,-1,0>,<0,1,0>,1 scale <Sma-.15,1,Smi-.15> } translate <sqrt(Sma*Sma-Smi*Smi),0,0> pigment { radial color_map { [0 color rgbt <1,1,1,0>] [0.1 color rgbt <1,.95,.5,0>] [0.3 color rgbt <1,.9,0,0>] [0.7 color rgbt <1,.9,0,0>] [.9 color rgbt <1,.9,0,1>] [1 color rgbt <1,.9,0,1>] } rotate <0,-90,0> } finish {ambient 1 diffuse 0} } #if (View=0) #object {AngleArc(140,6.5)} // Measures argument of the periapsis #end #if (View=1) #object {AngleArc(140,9)} // Larger arc for argument of periapsis only #end #if (View<2) cylinder { // Line of apsides <sqrt(Sma*Sma-Smi*Smi)-Sma-5,0,0>, <sqrt(Sma*Sma-Smi*Smi)+Sma+5,0,0>,.1 pigment {color rgb<1,0,0>} finish {ambient 1 diffuse 0} } #end #if (View<2) sphere {<sqrt(Sma*Sma-Smi*Smi)-Sma,0,0>,.5 // Periapsis pigment {color rgb 1} finish {ambient 1 diffuse 0} } #end #if (View=0) sphere {<sqrt(Sma*Sma-Smi*Smi)+Sma,0,0>,.5 // Apoapsis pigment {color rgb 1} finish {ambient 1 diffuse 0} } #end sphere { // Yellow, orbiting "moon" <0,0,Smi*Smi/Sma>,1 pigment {color rgb <1,.8,0>} finish {ambient .6} } no_shadow rotate <0,130,Incl> rotate <0,-60,0> } union { // line of nodes cylinder {<-30,0,0>,<30,0,0>,.1 pigment {color rgb<.3,1,.1>} finish {ambient 1 diffuse 0}} #if (View!=3) sphere {<23.6,0,0>,.5 // Ascending node pigment {color rgb 1} finish {ambient 1 diffuse 0} } #end #if (View=0) sphere {<-8.8,0,0>,.5 // Descending node pigment {color rgb 1} finish {ambient 1 diffuse 0} } #end #if (View=0) #object {AngleArc(60,8) // Measures incllination rotate <90,-90,0> translate <16.8,0,0>} #end #if (View=3) #object {AngleArc(60,17) // Measures incllination rotate <90,-90,0> translate <7.8,0,0>} #end rotate <0,30,0> } #local RefPlaneChecker=texture { // Texture for pigment {checker // reference color rgbt<.6,.7,1,.5> // plane color rgbt<.48,.56,.8,.5> scale 3 } finish {ambient .4} } #local RefPlaneMark=texture { // Texture for pigment {checker // markings on color rgbt<.6,.7,1,0> // reference color rgbt<.48,.56,.8,0> // plane scale 3 } finish {ambient 1 diffuse 0} } merge { // The reference plane triangle {<-9,0,-21>,<21,0,-21>,<-9,0,9>} triangle {<21,0,9>,<21,0,-21>,<-9,0,9>} texture { #if (View=0|View=3) object { difference { box {<-1,-1,#if (View=0) -9 #else -18 #end>,<1,1,0>} box {<-.8,-2,-1.8>,<.6,2,1>} box {<-2,-2,-99>,<.6,2,-2>} #if (View=0) translate <16,0,0> #else translate <7,0,0> #end rotate <0,30,0> } texture {RefPlaneChecker} texture {RefPlaneMark} } #else RefPlaneChecker #end } } union { // A, B, C, and D are common for all four images...: text {ttf "timesbi.ttf","A",.001,0 // A: Orbiting body scale .0035 translate <.0045,.0132,0>} text {ttf "timesbi.ttf","B",.001,0 // B: Body being orbited scale .0035 translate <-.0045,.0092,0>} text {ttf "timesbi.ttf","C",.001,0 // C: Reference plane scale .0035 translate <-.016,-.002,0>} text {ttf "timesbi.ttf","D",-.001,0 // D: Orbital plane of A scale .0035 translate <-.002,-.014,0>} #switch (View) // Deal with "special cases" in each of the four images: #case (0) // Letter markings for viewing all three angles text {ttf "symbol.ttf","W",.001,0 // "Upper-case" Omega at the lon- scale .0035 translate <-.002,.003,0>} // gidtude of ascending node text {ttf "symbol.ttf","w",.001,0 // "Lower-case" omega at the scale .0035 translate <.0009,.0158,0>} // argument of the periapsis text {ttf "timesbi.ttf","i",.001,0 // "Lower-case" i at scale .0035 translate <.0045,-.0083,0>} // the inclination text {ttf "timesbi.ttf","E",.001,0 // E: Descending node scale .0035 translate <-.011,.013,0>} text {ttf "timesbi.ttf","F",.001,0 // F: Periapsis scale .0035 translate <-.008,.0175,0>} text {ttf "timesbi.ttf","G",.001,0 // G: Ascending node scale .0035 translate <.0149,-.003,0>} text {ttf "timesbi.ttf","H",.001,0 // H: Apoapsis scale .0035 translate <.006,-.0182,0>} text {ttf "timesbi.ttf","J",.001,0 // J: Reference direction, scale .0035 translate <-.0145,-.014,0>} // e.g. Verial point #break #case (1) // Letter markings for viewing only argument of periapsis: text {ttf "symbol.ttf","w",.001,0 // "lower-case" omega at scale .007 translate <.0053,.01,0>} // arugment of periapsis text {ttf "timesbi.ttf","E",.001,0 // E: Ascending node scale .0035 translate <.0149,-.003,0>} text {ttf "timesbi.ttf","F",-.001,0 // F: Periapsis scale .0035 translate <-.0085,.0167,0>} #break #case (2) // Letter markings for viewing only longitude of asc. node: text {ttf "symbol.ttf","W",.001,0 // "Upper-case" Omega at scale .007 translate <.004,-.01,0>} // longitude of ascending node text {ttf "timesbi.ttf","E",.001,0 // E: Ascending node scale .0035 translate <.0149,-.003,0>} text {ttf "timesbi.ttf","F",.001,0 // F: Reference direction, scale .0035 translate <-.0145,-.014,0>} // e.g. Vernial point pigment {color rgb<1,1,1>} #break #case (3) // Letter markings for viewing only the inclination: text {ttf "timesbi.ttf","i",.001,0 // "Lower-case" i at scale .007 translate <-.011,-.012,0>} // the inclination #break #end pigment {color rgb<1,1,1>} // Common settings finish {ambient 1 diffuse 0} // for the letters no_shadow // in the images translate <0,0,.04> rotate <51.3765,-13.62699,0> translate <11,26,-33> } camera { // Viewpoint - DO NOT CHANGE without recalculating the right <1,0,0> up <0,1,0> // translates and rotate above - they align the letter location <11,26,-33> // markings in the image with the camera's viewing an- look_at <3,-16.5,0> // gle!! angle 55 } light_source {<10000,5000,-5000> color rgb 1}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Dimensions | User | Comment | |
---|---|---|---|---|
current | 15:49, 27 November 2005 | 1,200×1,200 (197 KB) | Peo | (Reordered letter annotations. Scene description modified to render several images.) |
20:58, 23 November 2005 | 1,200×1,200 (198 KB) | Peo | (== Beskrivelse == Raytraced image showing the concepts of inclination, longitude of the ascending node, and argument of the periapsis for a "minor" object in an elliptic orbit around a larger object. Raytraced using the Persistence of Vision Raytracer an) |