Anger function

From Wikipedia, the free encyclopedia

In mathematics, the Anger function, introduced in (Anger 1855), is a function defined by

\mathbf{J}_\nu(z)=\frac{1}{\pi} \int_0^\pi \cos (\nu\theta-z\sin\theta) \,d\theta.

and is closely related to Bessel functions.

The Weber function, introduced by H. F. Weber (1879), is a closely related function defined by

\mathbf{E}_\nu(z)=\frac{1}{\pi} \int_0^\pi \sin (\nu\theta-z\sin\theta) \,d\theta.

and is closely related to Bessel functions of the second kind.

[edit] Relation between Weber and Anger functions

The Anger and Weber functions are related by

\sin(\pi \nu)\mathbf{J}_\nu(z) = \cos(\pi\nu)\mathbf{E}_\nu(z)-\mathbf{E}_{-\nu}(z)
-\sin(\pi \nu)\mathbf{E}_\nu(z) = \cos(\pi\nu)\mathbf{J}_\nu(z)-\mathbf{J}_{-\nu}(z)

so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions Jν are the same as Bessel functions Jν, and Weber functions can be expressed as finite linear combinations of Struve functions.

[edit] Differential equations

The Anger and Weber functions are solutions of inhomogenous forms of Bessel's equation z^2y^{\prime\prime} + zy^\prime +(z^2-\nu^2)y = 0. More precisely, the Anger functions satisfy the equation

z^2y^{\prime\prime} + zy^\prime +(z^2-\nu^2)y = (z-\nu)\sin(\pi z)/\pi

and the Weber functions satisfy the equation

z^2y^{\prime\prime} + zy^\prime +(z^2-\nu^2)y = -((z+\nu) + (z-\nu)\cos(\pi z))/\pi.

[edit] References