Androstenediol

From Wikipedia, the free encyclopedia

4-Androstenediol
4-Androstenediol

Androstenediol is a term used to refer to two different steroids with molecular weights of 290.44. They are 4-androstenediol (4-androstene-3beta,17beta-diol) and 5-androstenediol (5-androstene-3beta,17beta-diol).

4-Androstenediol is closer to testosterone structurally, and has androgenic effects.

5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Coffey, 1988). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure by the Armed Forces Radiobiology Research Institute. Until 2007, it was being developed as a radiation countermeasure by Hollis-Eden Pharmaceuticals as Neumune (HE2100).

Androstenediol is on the list of substances banned by the Major League Baseball drug policy.

[edit] See also

[edit] References

  • MeSH Androstenediol
  • PubChem 10634
  • Coffey, DS (1988) "Androgen action and the sex accessory tissues". In E Knobil, J Neill (eds), The Physiology of Reproduction. Raven Press, New York, pp 1081-1119.
  • Singh VK, Shafran RL, Inal CE, Jackson WE 3rd, Whitnall MH (2005). "Effects of whole-body gamma irradiation and 5-androstenediol administration on serum G-CSF". Immunopharmacol Immunotoxicol 27 (4): 521–34. doi:10.1080/08923970500416707. PMID 16435574. 
  • Brown GA, McKenzie D (2006). "Acute resistance exercise does not change the hormonal response to sublingual androstenediol intake". Eur J Appl Physiol 97 (4): 404–12. doi:10.1007/s00421-006-0194-9. PMID 16636857. 
  • Head CC, Farrow MJ, Sheridan JF, Padgett DA (2006). "Androstenediol reduces the anti-inflammatory effects of restraint stress during wound healing". Brain Behav Immun. doi:10.1016/j.bbi.2006.03.007. PMID 16730942. 
  • Suzuki T, Shimizu T, Szalay L, Choudhry MA, Rue LW 3rd, Bland KI, Chaudry IH (2006). "Androstenediol ameliorates alterations in immune cells cytokine production capacity in a two-hit model of trauma-hemorrhage and sepsis". Cytokine 34 (1-2): 76–84. doi:10.1016/j.cyto.2006.04.007. PMID 16737821. 
  • Kiang JG, Peckham RM, Duke LE, Shimizu T, Chaudry IH, Tsokos GC (2007). "Androstenediol inhibits the trauma-hemorrhage-induced increase in caspase-3 by downregulating the inducible nitric oxide synthase pathway". J Appl Physiol 102 (3): 933–41. doi:10.1152/japplphysiol.00919.2006. PMID 17110508. 
  • Xiao M, Inal CE, Parekh VI, Chang CM, Whitnall MH (2007). "5-Androstenediol promotes survival of gamma-irradiated human hematopoietic progenitors through induction of NF-kappa B activation and G-CSF expression". Mol Pharmacol Epub ahead of print. PMID 17473057.