Anderson model

From Wikipedia, the free encyclopedia

The Anderson Model is a Hamiltonian model that is often used to describe Heavy Fermion systems. The model contains a narrow resonance between a magnetic impurity state and a conduction electron state. The model also contains an on-site repulsion term as found in the Hubbard model between localized electrons. For a single impurity, the Hamiltonian takes the form

H = \sum_{\sigma}\epsilon_f f^{\dagger}_{\sigma}f_{\sigma} + \sum_{<j, j'>\sigma}t_{jj'} c^{\dagger}_{j\sigma}c_{j'\sigma} + \sum_{j,\sigma}(V_j f^{\dagger}_{\sigma}c_{j\sigma} + V_j^* c^{\dagger}_{j\sigma}f_{\sigma}) + Uf^{\dagger}_{\uparrow}f_{\uparrow}f^{\dagger}_{\downarrow}f_{\downarrow}

where the f operator corresponds to the annihilation operator of an impurity, and c corresponds to a conduction electron annihilation operator, and σ labels the spin. The onsite Coulomb repulsion is U, which is usually the dominant energy scale, and tjj' is the hopping strength from site j to site j'. A significant feature of this model is the hybridization term V, which allows the f electrons in heavy fermion systems to become mobile, despite the fact they are separated by a distance greater than the hill limit.

In heavy-fermion systems, we find we have a lattice of impurities. The relevant model is then the periodic Anderson model.

H = \sum_{j\sigma}\epsilon_f f^{\dagger}_{j\sigma}f_{j\sigma} + \sum_{<j, j'>\sigma}t_{jj'}c^{\dagger}_{j\sigma}c_{j'\sigma} + \sum_{j,\sigma}(V_j f^{\dagger}_{\sigma}c_{j\sigma} + V_j^* c^{\dagger}_{\sigma}f_{j\sigma}) + U\sum_{j}f^{\dagger}_{j\uparrow}f_{j\uparrow}f^{\dagger}_{j\downarrow}f_{j\downarrow}

[edit] Bibliography

P.W. Anderson, Phys. Rev. 124 (1961), p. 41

Languages