User talk:Ancheta Wis/v

From Wikipedia, the free encyclopedia

Help:Displaying a formula

x_{n+1}=\sqrt{x_n(x_n+1)(x_n+2)(x_n+3)+1}

x_{n+1}=\sqrt{x_n(x_n+1)(x_n+2)(x_n+3)+1}


x^2+y^2

 \frac{\partial \rho} {\partial t} + \nabla \cdot \mathbf{J} = 0.

\frac{\partial \rho} {\partial t} + \nabla \cdot \rho \mathbf{v} = 0

  • [ T(A) \sim T(B)] \wedge [T(B) \sim T(C)] \Rightarrow [T(A) \sim T(C)]
  • \mathrm{d}U=\delta Q-\delta W\,
  • \int \frac{\delta Q}{T} \ge 0
  •  T \Rightarrow 0, S \Rightarrow C
  •  \mathbf{J}_{u} = L_{uu}\, \nabla(1/T) - L_{ur}\, \nabla(m/T) \!;
     \mathbf{J}_{r} = L_{ru}\, \nabla(1/T) - L_{rr}\, \nabla(m/T) \!.

\frac{\partial f}{\partial t}
+ \frac{\partial f}{\partial \mathbf{x}} \cdot \frac{\mathbf{p}}{m}
+ \frac{\partial f}{\partial \mathbf{p}} \cdot \mathbf{F}
= \int \mathrm{d} \mathbf{\Omega}\int \mathrm{d} \mathbf{p_1} \sigma(\mathbf\Omega)|\mathbf{p}-\mathbf{p_1}|(f' f'_1 - f f_1)


\rho \left(\frac{\partial \mathbf{v}}{\partial t}+ ( \mathbf{v} \cdot \nabla ) \mathbf{v}\right)=\rho \mathbf{f}-\nabla p +\mu\left(\nabla ^2 \mathbf{v}+\frac{1}{3}\nabla\left(\nabla\cdot \mathbf{v}\right)\right)


R_{\mu \nu} - {1 \over 2}g_{\mu \nu}R  + g_{\mu \nu}\Lambda  = {8 \pi}G T_{\mu \nu}


H(t)\left|\psi\left(t\right)\right\rangle = \mathrm{i}\hbar \frac{\partial}{\partial t} \left| \psi \left(t\right) \right\rangle
\left(\alpha_0 mc^2 + \sum_{j = 1}^3 \alpha_j p_j \, c\right) \psi (\mathbf{x},t) = i \hbar \frac{\partial\psi}{\partial t}(\mathbf{x},t)
\mathcal{L}_\mathrm{QCD} = \bar{q}\left(i \gamma^\mu \partial_\mu - m \right) q - g \left(\bar{q} \gamma^\mu T_a q \right) G^a_\mu - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \,
G^a_{\mu \nu} = \partial_\mu G^a_{\nu} - \partial_\nu G^a_\mu - g f_{abc} G^b_\mu G^c_\nu \,


4 \mathcal{L}_\mathrm{g} = - G^{\mu \nu}_a G^a_{\mu \nu} - B^{\mu \nu} B_{\mu \nu}